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We calculate the viscosity p and diffusive thermal conductivity KD of the Balian-Wert-
hamer state of a p-wave superQuid for & «&~. The nature of the excitations in the su-
perfluid state is fully taken into account, and realistic effective interactions are used. &(

tends to a constant, g'0(T~) for liquid 3He, and sz T . Mean free paths are also cal-
culated.

The viscosity in the A. and B phases of super-
fluid 'He has recently been measured by Alvesalo
et al. ' and by Johnson et al. ' In this Letter we
describe calculations of the normal-fluid viscosi-
ty and diffusive thermal conductivity for liquid
'He in the B phase well below the superfluid tran-
sition temperature T, , assuming this phase may
be identified with the Balian-Werthamer' (BW)
state of a P-wave superfluid. There is now con-
siderable evidence for this identification, partic-
ularly from recent magnetic resonance measure-
ments. ' Calculations of the transport coeffi-
cients have previously been reported, "but nei-
ther of them can be compared quantitatively with
the experimental results. Shumeiko's' calcula-
tions are for an s-wave superfluid and a contact
interaction, and Seiden's' take into account the
true nature of the excitations only approximately.

The basic elementary excitations in a super-
fluid are linear combinations of particles and

holes, and we shall find it convenient here to
work in terms of positive-energy excitations on-
ly. For descr ibing low-frequency, long-wave-
length kinetic phenomena one may use a Boltz-
mann equation. In addition to processes involving
the scattering of two excitations, the collision
term contains contributions from others in which
three excitations coalesce to produce one, and
one excitation decays into three. In general all
these processes are equally important, but at
temperatures T small compared to b. /kB the two-
excitation scattering processes are more impor-
tant by a factor exp(h/ksT) than the other pro-
cesses, which can therefore be neglected. Here
& is the superfluid gap.

Let us now calculate the relaxation time v, for
excitations of momentum p, . Consider a situation
in which the distribution function differs from its
equilibrium value only for excitations in the state
1: r, is then defined by &6n, /&t = -6n, /7'„where
5n, is the deviation from equilibrium. One finds

g W, (1, 2; 3, 4)[n, (1 —n, )(1 —n, ) + (1 —n2) ns n, ] 5&,p
-,- 5(E, +E, —E, —E4) .

Here n; =[exp(E;/ksT)+1] is the equilibrium distribution function, E; is the excitation energy, and
the indices i =1-4 denote both momentum and spin variables. W, (1, 2; 3, 4) is the transition probability
for excitations 1 and 2 in the superfluid to be scattered to states 3 and 4. At low temperatures the n s
are exponentially small and the square bracket in (1) becomes n, . In the superfluid the excitation en-
ergies are given in terms of the excitation energy $; in the normal state, as E; = (P +62)'~2, and since
at low temperature the important values of &; are of order (bksT)"' we may expand E; in powers of $;:

E; = & + ~z $ /b, +. . . . (2)
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For the same reason we may evaluate W, for $; =0. W, is therefore a function of only two variables,
the angles 8 and p used in normal Fermi-liquid calculations. The summations over momenta may be
converted into integrals over $; running from minus infinity to plus infinity. We find

y, '= (m+'/8w'k')(W, )Jd), n, J d$, d$, &((g,'+ $,
' —$,

' —$,')/2A),

where rn* is the effective mass, and

sin8d8dy W, (8, cp)

4m cos(8/2) ' (4)

W, (8, y) being the transition probability averaged over initial spin states and summed over final spin
states. The integrals over $, and $, may be performed directly and give 2m&, and the $, integral that
remains, fd)2n„ is just n„/v(0), where

n,„=g,n, = v(0)(2mhk~T)'~2 exp(-b /kB T)

is the number density of excitations, which tends to zero exponentially at low temperatures. [v(0) is
the density of states of both spins. ] Thus one finds

(5)

Here n is the particle number density. The combination in the square brackets is a dimensionless
number, which turns out to be =12 at the melting pressure. Note that the relaxation time is indepen-
dent of the energy and that we have dropped the subscript on 7,.

On the basis of simple kinetic arguments one would expect the viscosity q and diffusive thermal con-
ductivity KD of the normal component to be given by

@=5 p. (v')w

KD = g C~(V )T,

where

(7)

p„= (P F '/Sk BT ) n,„= nm*( 2m' /k, T)'" exp(-b, /k, T)

is the density of the normal component, (v ) = (kBT/&)vF is the mean square velocity of an excitation,
and c„=(&'/kaT') n,„ is the heat capacity per unit volume (p ~ and v~ are the Fermi momentum and
velocity). Inserting Eq. (5) for v into (6) and (7), one finds

7I = —', nm* v F'(4/w')(SE~/h') [(5/2~) v(0)'( W, )]"', (8)

where E~ =p F'/2m* is the Fermi energy, and

zD=2n 'nv~'k [(k/27T)v(0)'(W, )] 'T '.
Thus q is a constant of the same order of magni-
tude as q(T, ), the normal-state viscosity at T, ,

since &-k~T, . ~D is independent of & and differs
from the normal Fermi-liquid result only by a
factor of order unity. Qualitatively, this behavior
is the same as that found in Refs. 3 and 4.

These results agree precisely with those we ob-
tain from exact solutions of the Boltzmann equa-
tion. As usual one works with a deviation function

g; defined in terms of the deviation from local
equilibrium 5n; by 6n; = -(Bn;/~E;)P;. In the su-
perfluid state g~ $ is an exact solution of the
Boltzmann equation, since the excitation velocity

v is ($/&)vF, and the integral contributions to the
collision term are zero for g~ $.

It is interesting to note that a number of the re-
sults above are quite similar to results obtained
for rotons in 'He. '

To evaluate (W, ) we make the usual weak-cou-
pling assumption that the residual interaction in
the superfluid state is the same as in the normal
state. Thus, the residual interaction between ex-
citations in the superfluid state is found by per-
forming a Bogoliubov transformation on the nor-
mal-state interaction. Details of the calculations
will be reported elsewhere. "

The quasiparticle-scatte I ing amplitude in the
no rmal state may be expr es s ed in ter ms of its
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The C; are related to the Landau parameters I"&'

and F,' by

v(0)C, =Ao' —3AO', v(0)C, =A, ' —3A,',
v(0)C~ =AD' + Ao', v(0)C, =A, ' +A,', (12)

where A&' =E, '[1+F,'/(2l+1)] '. The symmetric
matrix D;; has been evaluated numerically with
the result

singlet and triplet components if one neglects the
small dipole-dipole interaction. For the simple
case when the triplet amplitude vanishes and the
singlet amplitude is a constant C „we have

W, (8, y) = (2w/h) 3-',C, sin~ 2 9(3 + cos'y), (10)

and (W, ) = (2m/h)(7/60)C, '. For the same inter-
action the average of the transition probability in
the normal state, (W„), is '-,'(W, ). The normal-
state viscosity may be evaluated exactly, " and
one finds 17(T =0)/q(T = T, ) =0.53 for this inter-
action if the gap is given by its weak-coupling
value. Simila. rly, one finds DDT = 0.67 z(T, )T, .

To obtain more realistic estimates for liquid
'He we have carried out calculations using for the
normal-state scattering amplitude the s- andP-
wave approximation which gives a rather good
account of the transport coefficients of normal
liquid 'He." We find that

mK. When comparing theory and experiment,
one should note the following points: First, so far
experiments have been made only for T ~0.5T,
and finite-temperature contributions to q could
possibly be important. Second, near the melting
curve the calculated viscosities for both the nor-
mal and superfluid phases are about half the mea-
sured values, although at zero pressure the cal-
culated and measured normal-state viscosities
are in excellent agreement. This may perhaps
indicate that the s- and P-wave approximation is
inadequate, but we stress the fact that q(0), un-
like ri(T, ), is very insensitive to all parameters
in the interaction except Cy.

For two-fluid hydrodynamics to be applicable
to a vibrating-mire experiment' the mean free
path t must be less than the viscous penetration
depth and the radius of the wire. The mean free
path is

l= (v')'" ~= 0.1 exp(4/u, T)l~,

where l& = w F&„ is a typical mean free path at
T, (-4 pm at the melting pressure), and 7„ is the
viscous relaxation time.

Finally, we remark that the diffusive thermal
conductivity will dominate the hydrodynamic flow
conductivity' KH below a certain temperature
which depends on the radius of the tube. One
finds, for a tube of radius B,

117 -8 -8
-8 39 2i -14
-8 21 207 -45

(13)

7 -14 -45 121

Using the Landau parameters given by Wheat-
ley" and A,' obtained from the forward-scatter-
ing sum rule neglecting Landau parameters with
l &1, one finds q(0)/q(T, ) = 0.28 at the melting
pressure, 0.27 at: 21 bar, 0.25 at 9 bar, and 0.20
at zero pressure if 4 is given by its weak-cou-
pling value. [Strong-coupling effects will in-
crease b somewhat and, therefore, reduce q(0)/
q(T, ).] The reason why these ratios are rather
smaller than the value 0.53 for the constant s-
wave interaction is that the terms involving C„
C„and C, increase the normal-state viscosity
appreciably compared to its value with the C,
term alone, but alter the superfluid viscosity
only slightly. The theoretical ratio is in rather
nice agreement with the data of Alvesalo et al. ,'
provided one discards the final upturn around 1.4

if A is measured in centimeters. Thus for A =0.1
cm the diffusive heat transport dominates for
T ~ 0.5T, , and therefore wD should be readily
measurable with present experimental techniques.
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The wave number of an electron plasma wave propagating on a collisionless plasma
column is found to differ from that of a small-amplitude wave at the same frequency.
The nonlinear wave-number shift oscillates in space. The magnitude of its first maxi-
mum, when normalized to the initial (nonlinear) damping coefficient, is found to be pro-
portional to the square root of the initial wave amplitude.

Recent theories' ' predict that the wave num-
ber, k„= 2~/A, , of a large-amplitude electron plas-
ma wave is not the same as the wave number of
a small-amplitude wave at the same frequency,
We have measured the nonlinear wave-number
shift using a phase-tracking interferometer. The
spatial dependence, magnitude, and scaling with
frequency and amplitude are determined.

If the initial wave amplitude, 4' (electric poten-
tial), is small enough, the linear theory of Lan-
dau' applies and is well verified by experiment";
in a homogeneous plasma a wave of constant fre-
quency has a complex wave number k = k„+ik „
which is independent of position and 4. It is also
well established' in theory and experiment that
k& becomes a function of position and C' when the
wave amplitude is large enough to trap the reso-
nant electrons. Conservation of energy between
the wave and the trapped electrons leads to non-
linear amplitude oselllatlons The trapped elec-
trons also cause k„ to depend on position and 4.
Conservation of energy in a reference frame
moving with the linear-wave phase velocity, u»
leads to nonlinear oscillations in k„. In this
frame, the amplitude oseil1ations are related to
conservation of momentum.

Morales and O' Neil' considered the initial-val-
ue problem. A wave of fixed wavelength is turned
on at t = 0 and propagates in an infinite, homoge-
neous, one-dimensional, collisionless plasma.
The time-dependent shift in the complex frequen-

ey caused by the trapped electrons is calculated.
They assume that the wave amplitude is constant
(negligible linear damping) and small enough for
the resonant electrons to be represented by a
second-order Taylor expansion of the electron
velocity distribution function, f, (v), about v~.
They also give the transformation to the bound-
ary-value problem studied in our experiment.
In this case a wave of fixed frequency cu, deter-
mined by a single generator, propagates away
from a transmitter probe at ~ =0. The time-de-
pendent frequency shift becomes a space-depen-
dent shift in the complex wave number. The
imaginary part of the shift gives the amplitude
oscillations. The real part is

5k„(z) = —(0,/ )gvs(k zs),

where 0, = (e 4 /m)'"((u, /k„)'(9'f, /sv') „ /(9 e/& ~)
e is the plasma dielectric function, k„ is the lin-
ear wave number, v is the (constant) oscillation
frequency, v, is the linear group velocity, v~ is
the plasma frequency, and —e and m are the
charge and mass of the electron. The function
g(ksz) (Fig. 2 of Ref. 1) gives the space depen-
dence in terms of the scaled position k~~, where
ks = vs/v~ and ue = (ek„C /m)'t' is the bounce fre-
quency of the trapped electrons. Iff,(v) is Max-
wellian, Q, &0. Sinceg(ksz) ~0, Eq. (I) gives
5k„~ 0. Examination of g(ksz) shows that 5k„ is
initially zero; it increases and executes damped
oscillations about an asymptotic value. The os-
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