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proposed by Murao'4 may be formed at a temper-
ature below O. I K. We plan to attempt to detect
this ordering by neutron diffraction at lower tem-
peratures and to investigate the mechanism of
magnetic ordering in dilute I'rNd alloys by in-
elastic scattering measurements on single crys-
tals. The behavior of polycrystalline samples is
not yet fully understood; presumably their mag-
netic ordering at relatively high temperatures is
associated with strains and defects in the crys-
tallites.

We have benefitted greatly from discussions
with J. Jensen, P. A. I indgard, B. Lebech,
B. Rainford, P. E. Gregers-Hansen, M. Blume,
and R. J. Elliott during the course of these ex-
periments.
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Recently developed renormalization-group techniques are used to study the tetracritical
(or bicritical) point of quenched mixed magnetic crystals (e.g. , 4&B& &, where A and B
have ferromagnetic and antiferromagnetic phase transitions). The tetracritical (bicriti-
cal) exponents are possibly given by the n=0 value of their ~ expansions. In particular,
the crossover exponent y, describing the shape of the P-7' phase diagram near the tetra-
critical point, is exactly equal to 1, This explains various experiments.

Recent developments in the theory of critical
phenomena led to a better understanding of phase
diagrams which exhibit bicritical and tetracriti-
cal points. ' ' Such points usually occur when a
system has two order parameters, with com-
peting interactions. A large class of such sys-
tems is that of quenched mixed magnetic crys-
tals, of the type AI, J3, ~, when pure A. and pure
B have different types of magnetic ordering (e.g. ,
ferromagnetic and antiferromagnetic). Examples
are Fe(Pd~ Pt, ~)„where FePd, is fer romagnetic
and FePt, is antiferromagnetic, ' (Mn, ~Fe~)WO„

where pure MnWO, and FeWQ4 have distinct anti-
ferromagnetic orderings, "NH4C1, ~Br~, where
pure NH4Cl and NH4Br have parallel and. anti-
parallel ordering of the ammonium tetrahedra, '
VAs~Se, ~, where USe orders ferromagnetically
while UAs orders antiferromagnetically, ' and
many others.

Unlike the anisotropic antiferromagnets in a
uniform field, which tend to exhibit a bicritical
spin-flop point and a first-order spin-flop line, '
most of the mixed magnetic crystals exhibit a
tetracritical point, and a m"'xed "intermediate"
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ordered phase, bounded by two second-order
lines (Fig. 1): For P &P, the transition at T, (P)
is into an antiferromagnetic phase, and at T3(P)
a ferromagnetic ordering is superimposed on the
antiferromagnetic one. A similar picture occurs
for P&P, . Thus, it has been suggested' that these
systems are ideal for studying recent theoretical
predictions near tetracritical points. These pre-
dictions relate to the shape of the lines T, (P), . . . ,
T,(P) near P„ to the nature of the transitions on
each of these lines, etc.' ' The easiest one to
check involves the relation T;(P) —T, -g'~~~,
where (asymptotically close to the tetracritical
point) g-p-p„and where the g s are shift ex-
ponents. Scaling and renormalization-group ar-
guments yield' ' (, = g, = cp, where y is the Riedel-
Wegner crossover exponent for anisotropic sys-
tems. " Usually, y&1, and therefore T, (P) and
T, (P) approach T, tangent to each other Th.e ex-
periments on mixed crystals do not seem to yield
this result. ' ' Indeed, they seem to agree with
the mean-field result, (, = g, = 1.' The experi-
mental situation as regards T, and T4 is a little
less clear.

In this note, I summarize preliminary results
of a renormalization-group theory of mixed mag-
netic crystals, taking into account correctly both
the randomness of the mixture" and the fact that
both ferromagnetic and antiferromagnetic orders
are possible. " The main result is that the tetra-
critical point may be described by exponents
which are obtained from the E expansion" by set-

pure A
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caI
(T, , pt)

0'
pure B

FIG. 1. Schematic phase diagram of the mixed mag-
netic crystal A&B

& &.

ting n, the number of spin components, equal to
zero." In this limit, the crossover exponent y
is exactly 1, as in mean-field theory, to all or-
ders in & = 4 —d. Thus, the phase lines T, and T,
in Fig. 1 are straight lines, in agreement with
mean-field theory and with experiment, but at
variance with all other predicted tetracritical
and bicritical points. ' ' However, other expo-
nents are not mean-field-like. In particular, g,
= (,=1 —y„&1, where p„= -~@+~«'e'+0(c') is the
"cubic" crossover exponent at n =0.4 An experi-
mental study of these may serve as a check of
the theory, and yield much better understanding
of tetracritical points.

For simplicity, we consider here an Ising mod-
el, with the Hamiltonian

X= —P(J,,""P,P, + J,, [P,(1 —P,)+(1 —P, )P,]+ J,,"(1—P, )(1 —P, ))S,S, ,(4}
where P; = 1 if the site i is occupied by an ion A, . and P; = 0 otherwise. The sum is over site pairs (ij),
and J;," denote the appropriate exchange integrals (J;; 8=0). At this stage the argument is general;
later we shall use a continuous-spin model, and the trace over the spin S; will be understood as an in-
tegral over —~ & S; & ~, with a weight function exp(-2 S —vS —.. .). For quenched crystals, the free
energy is calculated as the average (over all possible spatial distributions (P;) of the two types of at-
oms) of the free-energy means. " The atoms are assumed to be immobile (on the relevant time scale)
and the results to be independent of the particular distribution.

As a first step, we write %=X,+X„with

X,= —g J„S,S, ,
{&i}

& = —z [A (P -P)(P -P)"+D J(P +P -2P)]S S;

where J;., is the coefficient of S;S; in (1) with all p s replaced by the average p, A;;= J& —2J,.
&

+J;, , and D;; = J;; —J;; +A;,P. We now expand the free energy in a perturbation series in X„and
then average, term by term, over all configurations (P;j (assuming that the occupation probabilities of
different sites are independent of each other"). The resulting free energy is

-PF = ln tr exp(-PKo) + g g PC;;,[(S;S; S S) —(S;S ) (S;S )]+.. . ,{ij} {il}
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with C;;~ ——pp(1 —p)[p(1 —p)A;, '6, , +2D;,D;~], and the angular brackets denoting a, thermal average with
exp(-PX, ). Following de Gennes, "and Grinstein and Luther, "we then note that the same free energy
per degree of freedom will arise from the Hamiltonian

x,«-- Qi, Qs. , s, —p pc... gs, s,"s, 's, '+. . . , (5)
&ij) n (ij& (i&& ne

where now(S;", o. =1, . . . , nj is an n-component spin'vector, if we set n= 0 at the end of the calcula-
tion. This will eliminate terms like Q„B(S;"S;")(S;as, a) from the free energy, as required by (4). A
similar analysis may be performed for higher-order terms in the spins, and to all orders in perturba-
tion theory. Using the continuous-spin model near four dimensions, we need not consider the explicit
form of these higher-order terms. "

%'e next want to discuss a possible simultaneous ferromagnetic and antiferromagnetic ordering. As
recently shown by Nelson and Fisher, "this ean be done by introducing two spin fields, o+"(q) and
o "(q), via

o+"(q)=2c,[g exp(iq X;)S;"+ P exp(iq ~ X;)S; ],
icp iCQ

where c, are normalization constants, and 1 and 0 are the two interpenetrating sublattices into which
the lattice is decomposed when the spins order antiferromagnetically. The wave vectors q run over a
reduced Brillouin zone, corresponding to a superlattice. In terms of these variables, with appropriate
choices of values for c„ the partition function becomes

Z= f g [0"o (q)d" o (q)] expR,

with

2 jd "x((&S,)'+ (~S-)'+~, IS,I'+~ IS I'+2u IS,I'

+4u, IS,I'IS I'+2u IS I'+P [2n (S ")'+4@, (S, )'(S )'+2m (S ")']$,

where we use schematic real-space notation,
S, (x) denoting the Fourier transform of o+(q).
All the coefficients in (7) are simple functions of
T and p. In particular, x+ and x are combina-
tions of &r=Q;~:r Jo; and of &o=g;- o Zo;, where
0( I'. If Jz&0 and Jz&0, then the equation ~+
=r has a solution 0 & p, &1 for some temperature
~t ~

For p &p„r+ is greater than r and o' orders
first to yield an antiferromagnetic ordering. This
phase transition will be of the type discussed by
Grinstein and Luther": At p =0, the transition is
Ising-like. For p ~0, the impurities lead to a
term u p~&(s )2(s a), and this finally leads to
a first-order or smeared transition (u &0) or to
a fixed point characterized by the n = 0 exponents
(u &0). Which of these will occur at d=3 de-
pends on details of irrelevant parameters, which
affect the first few iterations. " For p near 1,
r+ &r„and a ferromagnetic ordering results with
a similar behavior. For p =p„ these two second-
order lines meet at a bicritical or tetracritical
point. ' ' This point will be described by the sta-
ble fixed point of the renormalization-group re-
cursion relations for the parameters in (I), when

x+ =r . These recursion relations yield many
fixed points and not all of these have yet been

fully analyzed. " However, it seems that probably
only one fixed point, namely v„=v, = v = 0, u
=u+ =u = v'e/4+O(e'), is fully stable. This is
simply the analytic continuation of the fixed point
describing the isotropic 2n-component spin mod-
el" to n=0. To derive the shift (crossover) ex-
ponent from n-component to m-component be-
havior, we follow Bruce's" analysis: A diagram
contributes to his expression for T, (g&) (g~ is
the anisotropy) only if it has at least one internal
line involving r, [the (n -m)-component nonzero
inverse susceptibility] and two external lines in-
volving r, (= 0). Such internal lines must be on
closed loops, and yield prefactors of n -m."
With subtraction of T, (0), each such integral be-
comes of order r, . The self-energy equation for
r2 shows that (n m)r2 is -of order ng„. Hence,
in the limit n-0, all diagrams give zero con-
tribution. Thus, the crossover to the lines 7.',
a.nd T, is given by T;(p) —T, -p -p, . All other
exponents are similarly obtainable from the E

expansion. In particular, the crossover expo-
nent y„due to the (irrelevant) parameter u, =i~(u„
+u ) -u, , which generates terms like S+'+S ',
is given by the n = 0 value of the "cubic" cross-
over exponent. ' As shown by Bruce and Aharo-
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ny, 4 the sign of this parameter determines if the
point (T„p,) is bicritical (u, &0) or tetracritica. l
(u, &0). The fact that u, is irrelevant leads to
values of g, = g, = y —y„which are larger than
unity, so that the mixed phase is to be observed
only at finite distances below T,.

It should be emphasized that the recursion re-
lations we study in the vicinity of d=4 cannot
give accurate information as regards the actual
Hamiltonian flow at d = 3. Higher-order spin
terms, and other irrelevant variables, affect the
initial iterations. It is thus difficult to predict
if a given Hamiltonian will indeed flow to the n = 0
fixed point and what will be the effective sign of
u, . In some cases, the flow may lead to anoma-
lous regions, associated with smeared or first-
order transitions, "or to some other stable fixed
points (presumably with y &1)." What I want to
emphasize here is that the n=0 fixed point is
stable, and may describe the tetracritical (bi-
critical) behavior for some (unknown) range of
the initial parameters. The agreement with ex-
periments seems to encourage belief in this pos-
sibility.

- There are many possible generalizations of the
present model: One can consider an anisotropic
antiferromagnet, with an impurity which has an
opposite anisotropy, leading to a metamagnetic
tricritical point or a spin-flop point at lower uni-
form magnetic fields'; one can consider impuri-
ties which introduce anisotropies; etc."
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