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Bond Charge, Bond Polarizability, and Phonon Spectra in Semiconductors
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A nonlinear extension of the bond-charge model is used for the analysis of the infrared
and Raman spectra because of phonons in diamond, silicon, and germanium. The infra-
red absorption of these crystals is explained by the anharmonic coupling between the bond
charges and their neighboring ions. The first- and second-order Raman spectra are de-
scribed successfully by means of bond polarizabilities. The relation of the model param-
eters to the photoelastic constants and band structures is discussed.

In recent years the bond-charge model (BCM)
introduced by Phillips' was used for the descrip-
tion of the lattice vibrations in covalent crystals
by Martin. ' Very recently the model has been
modified by Weber' to include the adiabatic mo-
tion of the bond charge (Fig. 1). The bond charge
arises from the off-diagonal part of the dielectric
matrix~ "' and corresponds formally to the acous-
tic sum rule. ' This BCM is in many respects
analogous to the rigid-ion model of ionic solids
which accounts quite satisfactorily for the infra-
red absorption in ionic crystals via the anharmon-
ic forces between the ions. ' In a similar way we

may expect that the "anharmonic" forces between
the bond charge and the ions are responsible for
the infrared absorption in covalent crystals.

The infrared absorption is generally described
by the imaginary part of the dielectric suscepti-
bility

FIG. 1. Bond-charge model (after Ref. 8). y;; (r),
central potential between nearest-neighbor iona. p; «(r},
central potential between ions and bond charges. V&,
bond-bending potential (Keating, see Ref. 4} between
neighboring bonds. 2Z, —Z, values of ion and bond
charges which determine the Coulomb forces.

X.."(~)=(«+/&f1,) P IM„"'(q, j„-q,j,)l'(n, +n. +1)~(~-~,-~.).
Here, n, and n, denote the thermal occupation numbers of phonons (q, j,) and (- g, j,), respectively,
and M" means the second-order dipole moment. In the BCM we determine the matrix elements of
M ' from the cubic anharmonic expansion term of q&; «(r) (Fig. 1) which we denote by Q'. There are
three independent parameters, n =&)&'„„„, p = p'„„,, and y = p'„„. These parameters contribute to the
matrix elements of the second-order dipole moment as fo11.ows:

M ' = (N/2)&co 'P:U'U, (2

where the hypervectors U' and U are built of elements U„i+ =U' —U' and U,„i =U'+U' —2U', re-
spectively Here, .the local displacements are decomposed into those of even parity (where neighbor-
ing ions are moving symmetrically against the bond charge at rest) U' —U', and those of odd parity
U +U" —2U", with the bond charge moving against the two ions in phase. Only the odd displacements
(U ) carry dipole moments of bond charges while the even displacements (U+) lead to a modulation of
these dipole moments via the potential y; «(Fig. 1). With the help of n, P, y, a very good fit of the
infrared spectra in C, Si, and Ge" is obtained.

The results of a one-parameter fit (n = P = 0, ye 0) for diamond are shown in Fig. 2. A comparison
with the seven-parameter fit of Kress, Borik, and Wehner, "using the formal expansion in terms of
M' ', shows that the physical origin of the formal parameters is a strongly localized nonlinear elec-
tron- ion interaction.

The Raman scattering in covalent crystals exhibits a one-phonon line with symmetry I'»+ and two-
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phonon spectra of symmetry I",', I"»+, and 1"»'. The second-order Raman scattering tensor is given
by (Stokes part)"

(4)

where e
~~

and n & are the longitudinal and transverse components of the BP. The expansion coefficients
of P defined in Eq. (4) are then simple linear combinations of a~~, a~, and their derivatives:

cv„=4(a'ii + Q g)/3QO, aq = 4(cog —a' J/3QO) Bi =roll„
a', ' =r, 'a „", n» = r,n, [in~ a, /(R')'[]', a»' = r, '(a, [in( n, /(R')'( ]')';

r, is the equilibrium bond length. Thus,

I~8&z(Q) =2 Q P„~(q, j„—q,j,)P& (q, j„—q, j2)(n, +1)(n, + l)6(Q —&u, —&o,). (3)

The polarizability tensor P may be expanded in powers of the ionic and bond-charge displacements
in ordinary space as was done for the nonlinear dipole moment M"' in Eq. (2):

P = Po+ P' ~ U++(2)P'. (U+U++ U "U ).
The contribution of g to the Raman spectra analogous to Eq. (2) for M cannot account for the sec-

ond-order Raman scattering since it leads to a very weak change of the crystal polarizability. Instead,
we followed the concept of bond polarizabilities (BP)" "and represented the polarizability of the co-
valent crystal P by a sum of independent BP's each of which depends only on the bond length R' of two
neighboring ions. Under this assumption P is given by"

P~a(R )= Q~[R~ Rs ng(R )+(6~a -R„RB )a ~(R )], (5)

Po„s-- Q a„6„6——(Qo/4m)(coo —l)6~8, P'~aq(I'„+) = (Qo/ro&3)at2, &~aq,

P' „„p(F,') = (Q,/12r, ')[-a, '+ (1 —35„„)a,],
P2„ap„(I"„+)= (Qo/24ro')(2a„+ 3a, 6q „)(2—& Bp

—e„s,),
(I +) = (Q /12ro )[—n2 ' —3a25(6p„+ 1 —e s~ —e„sp) —Bn, (1 —&p p)(1 —E„sp —&~8„)],

(6)
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FIG. 2. Infrared absorption ~ (cu) of diamond at 296
K. The solid line is the experimental curve of Ref. 18.
The histogram is the absorption spectrum calculated
with only one parameter (y).

where the subindices n, p refer to the Cartesian
coordinates of the dielectric tensor and its de-
rivative; p., v are the coordinates of the differ-
ences in the displacement of near-neighbor atoms;
&~~&, the I evi-Civita, tensor, is given by a~8&
=(1 —& 8)(1 —6 „)(1—6s„); and e g„=(1—6 8)

x (1 + 6~p) (1 —
8 ).

Calculations of the first- and second-order Ra-
man spectra of C, Si, and Ge were carried out
with the five fitting parameters o, , n„n, ', n»,
and ~»'. e„was obtained from e „. The domi-
nant component of the experimental spectra is
that of I', ' symmetry accompanied by a weaker
I »' quadrupole and a very weak F»' scattering.
These facts are well reproduced by our model in
all three substances. Preliminary results for
silicon were shown elsewhere. " Here, we focus
on the situation in diamond.

In Fig. 3 the three spectra of diamond are com-
pared with our calculations. The two prominent
spectra with F,' and j."»' symmetry are practi-
cally determined by n, ' and e„', respectively,
which are approximately equal. This corresponds
to a very low value of e~ as compared to e

~~
in

diamond (n, = a„) and indicates a simple (longi-
tudinal) charge-transfer mechanism in this crys-
tal. Since the intensity of the measured Raman
spectra is only known in arbitrary units we de-
termined n, from the photoelastic constants P»
+2P»." The nonfitted photoelastic constants P»
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TABLE I. Values of quantities calculated in this pa-
per. The experimental values are given in brackets.

C
10

L0
L

J3
~~ 5

X
Ch p

LUI—
Z 5

X
X
% 0

p
2200

I 1

2400

n [cm-']
2600

'1/
C[

1/ q
Q25/0 q
625/0

P11 P12

11 12

&44

q
aii (R )

n, (R3)

p ( 1 ) (g2)

(5.86)
.4. 13

284. 65
2. 13

255. 6

-0. 16
(-0.16)
-o.283
(-0.293)

-0.172
(-0.172)

0.387
o.387
3.293
0.0
3.5

-1.82

Si

(11.7)
-46. 16

-180.02
-23.08

0.0
-0.058

(-o.o58)
0.01 3

(-0.167)

-0.0076
(-0.082)

0.851
-0.069
6.006
7.749

13.95
6.73

Ge

(16.3)
-57.45

-288. 22

-24. 39
-248. 78

-0.28
(-0.28)

0.016
(-0.0095)
(0.011)
0.019

(-0.074)
(o.o12)
1.218

-o.167
9.89

15.49
43. 1

40. 53

FIG. 3, Second-order Raman spectra of diamond at
300 K. The solid lines are the experimental spectra
of Hef. 19. The histograms are the calculated spectra.

f
Z1/j:2

(+4 )

334
(250)

93.4

(35)
52

(60)

-P», P«agree for diamond very well with the
experimental values (Table I).

A feature of particular interest is the peak at
the cutoff of the two-phonon spectra which often
is attributed to a two-phonon bound state. " Since
our calculation represents well the frequency of
the experimental peak (slightly above 2a&~ )
as well as its shape we believe that our result
does explain the two-phonon spectrum of diamond
without invoking a bound state. A certain "over-
bending" of the LO mode in the [100]direction
above the Raman frequency with a subsequent ex-
tension of the density of states in this frequency
region was first proposed by Musgrave and Po-
ple." Thus within our model the peak would be
due to an overtone volume scattering, in agree-
ment with the conjecture of Uchinokura, Sekine,
and Matsuura. "

For germanium and silicon a large increase in
a, is observed (Table I). Our calculated first-
order Raman tensor agrees quite well with that
calculated by Swanson and Maradudin, "while for
diamond our value has the opposite sign. This
discrepancy might be due to the strong depen-
dence of the Ra,man tensor on 6 in Swanson and
Maradudin's calculation. We note that the P»

~Ref. 20.
"Ref. 21.
cRef. 22.
dRe f. 23.
e Ref. 24.
Ratio of the first- to second-order Raman intensity.

—P» and P«calculated with our model for ger-
manium have opposite signs to those observed
experimentally. This rather disturbing fact is a
consequence of our assumption of simple bond
polarizabilities which is good for diamond. For
germanium, however, it is known" that two ma, in
mechanisms contribute to the polarization: the
average band gap E, ("Penn" gap) and the lowest
direct gap E,. While & is determined mainly by
E„ in the differential parameters one encounters
equal contributions of both mechanisms which
can even have opposite sign. " The shear photo-
elastic constants, determined at long wavelength
by E, and E„reverse sign near E, because of
the increasing contribution of this gap. The first-
order Raman tensor of germanium, however, is
mainly determined by E, and no antiresonance
cancellation occurs. " p»+2p» is determined for
long wavelength by E, and so should be the I', '
scattering. " Within this model, and assuming
that the quadrupolar (I »' and I »') scattering
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is produced mainly by the E, gap, a fact which
seems to agree with experiment, we conclude
that the calculated p» -p» and p«represent only
the F, contribution to these quantities. We have
also listed in Table I, footnote d, the contribu-
tions of Z, to p» —p» as extracted by Cardona. "
The proximity of these contributions to the val-
ues calculated with our BP model is quite satis-
factory. For silicon the situation is somewhat
more complicated and shall be discussed else-
where together with the details of the present
work.

In spite of the qualitative nature of these con-
siderations we believe they go far in elucidating
the microscopic physics behind the BP model.
They can, alternatively, be discussed by relat-
ing the increase of o. ~ when going from diamond
to germanium to a breakdown of the sp' hybridiza-
tion in the bonds due to a strong lowering of the
I,' band at the I' point.

The authors are grateful to Dr. Weber and
Dr. Zeyher for helpful discussions.
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