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Yang's Gravitational Field Equations
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7 examine the field equations for the gravitational field i~ &+ceo recently proposed by

Yang. Similarities with the orthodox theory are pointed out but the equations appear to
afford several "unphysical" solutions which will require investigation.

Qyb n 0p

or equivalently

C, ),, ~=0

R =R = const,

where R &&z and C ~&~ denote the Riemann and
Weyl tensors, respectively. Further from (2)
with the use of the Ricci identity it follows that
the curvature tensor satisfies the quadratic iden-
tity~

R Sty~R, )=0 (4)

(where the square brackets denote antisymmetri-
zation), or equivalently

Q~s)), ~R,j = 0.

This identity may prove useful in discussing the
algebraic proper'ties of the "non-Einsteinian" so-
lutions of (1) (i.e. , those for which R sW&Rg s)
For example, (4) precludes the existence of cer-
tain subclasses of Petrov types: types I-2, I-4,
Ie-l, le-3, as well as those subclasses of types
I-1, I -3, and I-3, and I-6, for which none of
the eigenvalues of the Weyl tensor are real; cf.
the classification of Jordan, Ehlers, and Kundt. ~

Yang, ' in his recent discussion of gauge fields,
has suggested the identification of the gravita-
tional field equations in relativity theory with
the equations for a parallel-displacement gauge
field. With this identification a pure gravitational
fieM is to be described by a four-dimensional
Lorentz manifold satisfying

Res; y -Ray; 8=0~

for the Ricci tensor R q. A similar proposal was
also made by Kilmister and Newman. ' This note
will be concerned with those manifolds on which
(1) is satisfied, but for which R„sw ~Rg s.

From the Bianchi identities it follows that the
scalar curvature R =R of the manifold is con-
stant, and that the above equations can be written
as

Some specific solutions. —(a) A straightforward
computation yields the rather surprising result
that the Einstein universe,

ds = —(1 -r /ha) ~drm -r2(d82+ sjn28dp&)+dP

h =const, is a solution of (1). (b) From (3) we

see immediately that all solutions of Littlewood's
equations for pure gravitational fields' are "pure-
space" solutions in Yang's sense. These include
the spherically symmetric example

ds'= -A 'dr' -r'(d8'+ sin'8dkp') +A sdP,

where A = 1+h//r, h = const. The fractional ad-
vance of perihelion per revolution for this space
has been calculated by Pirani; it is one-sixth of
the amount derived from the Schwarzschild solu-
tion, and in the opposite direction. (c) A class
of axially symmetric static solutions are given
by

ds' = -p'(dr'+r'd 8'+dz' -dt'),

with p p(r, z) a solution of Laplace's equation.
The choice

Nl m
jr2 ~ (z a)2]1/2 [r2 y (z y a)2]1/2

couM naively be interpreted as a static solution
with two particles of equal mass m at points z
&+a on the axis r =0, without the presence of a
"massless rod" holding them apart (cf. Berg-
mann~).

Some similarities saith the orthodox Einstein
theory. —(a) With use of the metric for the time-
dependent spherically symmetric case in the
form

ds'= —e dr'-r'(d8'+ sin'8dy')+e "dt'

where 1 = A. (r, i) and v = v(r, i), the classical Birh-
hoff theorem of general relativity generalizes to
the manifolds satisfying (1); viz. "the time depen-
dence of solutions to (1), of the above form, can
be removed by a transformation of the time-vari-
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able. " (b) The Goldberg S-achs theorem relating
algebraically special pure gravitational fields
and the existence of a congruence of null, shear-
free geodesics in vacuum space -times general-
izes to all solutions of (1). This is implicit in the
conformal generalization of the Goldberg-Sachs
theorem given by Kundt and Thompson. ' (c) It is
well known that the necessary and sufficient con-
ditions for a pair of special Einstein spaces (non-
flat) to be conformally related is that they be of
Petrov type N and that the fourfold principal null
vector is hypersurface orthogonal. Modulo the
fact that Eqs. (1) admit conformally flat solutions,
the above result also holds for the (nonconformal-
ly flat) situation discussed here.

These and other results will be derived and

discussed in more detail in a forthcoming paper.
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ERRATA

SPECULATIONS ON DETECTION OF THE "NEU-
TRINO SEA." L. Stodolsky [Phys. Rev. Lett. 34,
110 (1975)].

P. R. Phillips [Phys. Rev. 180, 1331 (1969)] and
P. R. Phillips and D. Woolum [Nuovo Cimento
64B, 28 (1969)] have discussed and investigated
the effects of a vector field in space, of which my
"neutrino sea" should be one example. Some of
the effects are quite similar to those I discussed.
The experimental accuracy reached, of course,
is far from that needed for the neutrino sea ac-
cording to my estimates.

On page 110, first column, fifth line from the
bottom, the word '"neutral" was omitted. The text
should read "(If the neutral currents exist. . .)."

REMARKS ON THE 3105-MeV RESONANCE.
T. N. Pham, B. Pire, and Tran N. Truong [Phys.
Rev. Lett. 34, 347 (1975)].

Equation (3) should read

1 (e+z'/2) 42

vY M4
2M'' (~-~'I~)' M'

X
d8

(s —M2)'+ M'I' =0.7.
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