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and h is the optical pulse energy of strong beam.
The quantity G(r) is the electric field autocorre-
lation function. Substituting the experimental
parameters m*=0.088m„h= 113 J/m', l = 5x10 '
m ', we obtain a = 2.5. The peak-to-background
ratio is then

This is somewhat larger than the experimental
value of approximately 2.

We would expect the measured spike to be some-
what broader and reduced in amplitude from that
predicted by the electric field autocorrelation
function because of imperfect overlap of the two
beams. A bandwidth of 10 cm ' would produce
a spike of width of approximately 1 psec.

%Ye believe the slower feature in the experiment
(Fig. 1) to be due to a saturation of the absorption
by band filling, i.e., a filling of conduction-band
states and depletion of valence-band states to the
point where the separation between electron and
hole quasi-Fermi levels approaches the photon
energy. The buildup of this effect follows the inte-
grated optical pulse energy since recombination
is expected to be slow. The decay, however, is
most likely due to a reduction in density by the
diffusion of the electron and holes from a region
approximately o. ' (1 pm) near the surface into
the crystal (approximately 5 pm thick). While
the dynamics of this decay are quite complex, we

can see that the overall decay rate is comparable
to previous measurements2 of diffusion rates. We
can make a rough estimate of the plasma density
required to produce band filling by calculating
the positions of the electron and hole quasi-Fer-
mi levels assuming parabolic bands. Using the
density-of-states effective masses, m, = 0.55mo
and m„= 0.35m„we find that the quasi-Fermi lev-
els are separated by the photon energy of 1.17
eV (compared to E,=0.66 eV) at a density of ap-
proximately 2& 10 cm, slightly less than the
estimated experimental value. Although band fill-
ing could also contribute to the parametric cou-
pling responsible for the spike by an amplitude
grating, this process is at least an order of mag-
nitude smaller than the plasma index mechanism.

In conc1usion we have demonstrated that para-
metric coupling in an electron-hole plasma can
explain the results of Kennedy et al. without re-
quiring an ultrafast relaxation process. Further-
more, we have observed a true saturation of the
absorption which can be accounted for by band
filling.
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It is pointed out that certain phase transitions which involve a doubling of the unit cell
are described by n-component vector models with n-4. In particular, it is noted that the
structural transition in Nbo& is described by an n=4 component model with some tetra-
gonal anisotropy. The critical behavior of this model is studied to order &, by the exact
renormalization group in d =4- ~ dimensions. It is found that the critical behavior is de-
termined by a new, tetragonal, fixed point.

The critical behavior of the n-component vector
model has been of considerable interest in recent
years. ' ' For n=1, 2, 3 the model corresponds to
physical systems which are Ising, X- Y, and
Heisenberg-like, respectively, It has also been
argued" that the limit n-0 corresponds to amor-
phous Ising systems. In this work, it is pointed
out that certain phase transitions, which involve

a doubling of the unit cell in one or more direc-
tions, are described by n-component models with
n ~ 4. As discussed by Landau, ' the symmetry-
breaking order parameter associated with a sec-
ond-order phase transition transforms as an ir-
reducible representation of the symmetry group
of the high-symmetry phase. The number of in-
dependent components of the order parameter is,
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therefore, equal to the dimensionality n of the
representation according to which it transforms,
and the transition is described by an n-component
model. For transitions which do not involve a
change of the unit cell, the dimensionality n satis-
fies n 3. The reason is that in these cases the
order parameter transforms as an irreducible
representation of the point group of the high-sym-
metry phase, and the dimensionality of these
representations" is smaller than 4. In case that
the unit cell is doubled in one or more directions,
the relevant group is the sPace group, and, in

principle, it may have irreducible representa-
tions with dimensionality n) 4. There exist many
systems which exhibit transitions associated with

highly degenerate representations. The structur-
al phase transition in NbO, "corresponds to n =4,
the antiferromagnetic transitions in ErSb,"MnSe, "
and a-MnS" correspond to n =8, and there
exist other examples. It would be interesting to
compare the critical behavior of these systems

with calculations done on the appropriate n-vector
models. The study of the critical behavior of
these systems may also provide an experimental
test for the regions of validity of the 1/n and e

expansions. "
In this work I discuss in detail the structural

phase transition in NbO, . It is shown that this
transition is described by an n = 4 vector model
with some tetragonal anisotropy. The critical
behavior of this model is studied in the exact re-
normalization group to second order in e. To do
that, one should write a Landau-Wilson-type
Hamiltonian to fourth order in the order parame-
ter, which is invariant under the group of the
high-symmetry phase. In general, one obtains
an anisotropic n vector model whose anisotropy
is determined by the symmetry of the problem
and the representation involved in the transition.
I will show that the appropriate Hamiltonian for
describing the phase transition in NbO, is -given

by

4 4 4 4

fdic

{ 2 r Q, 'P 2Z (&'v ')' —~( Z v )' —~ 8 m —~(vi'v'+ v~'w')~.

This Hamiltonian has two nonisotropic terms: v,
which has cubic symmetry, and zo, which has
tetragonal symmetry (see the following section).
The critical behavior of this model with u =0 has
been studied for arbitrary n to second order in e
by Aharony. ' For n = 4 he found that the stable
fixed point to lowest nontrivial order in e is the
cubic point. ln studying the Hamiltonian (1), I
find that the cubic fixed point is unstable to m

perturbations. The model is found to have two
tetragonal fixed points, one of them is stable to
lowest nontrivial order in e. Taking a=1 one
finds, for example, that the critical exponent P
which corresponds to the stable fixed point is
given by P = 0.39. This exponent is now being
measured at Brookhaven National Laboratory.

NbO, undergoes a second-order structural
phase transition at T, - 800 C, in which the sym-
metry is reduced from P4, /mnm, in the high-
temperature phase, to 14,/a in the low-tempera-
ture phase. Neutron-diffraction" as well as x-
ray measurements" show that the unit cell below
the transition is 16 times larger than that above

) the transition, and that the order parameter
which becomes critical at T, belongs to a recip-
rocal-lattice vector k = (—'„-,', —,'). The little group
of this vector is 2mm. The order parameter be-
longs to one irreducible representation of the
little group, and preliminary studies" show that
this representation is either A, or A, (both are
one-dimensional). " The star of the vector k con-
sists of four vectors, +k and +F, where k =(—,',
——,', —,'). The order parameter which is associated
with the transition has, therefore, four indepen-
dent components, which can be written as

+k= @1+&9'2~ +-k= A —~%2r

3+ 1+4, 4 k
—=P3 —SP4

where y„1=1,. . ., 4, are real parameters. The
order parameter (2) has one second-order in-
variant

4

+a@-a+ +r @

and three fourth-order invariants

(@„@,+4„-4;)'= ( g y, ')', (4a)

2 2 2 2 2 2 2 2
k "k k+-k +1 P3 A P4 P2 P3 9 2 'P4

4
e„'+e „'+e + 4 „-' = 2 Q p,4 —12(y,'q, '+ y, 'y, ').

(4b)

(4c)
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(5a)

The Hamiltonian of this system, to fourth order in cp, , is therefore given by" (1). We assume in this
work that the exchange is isotropic and is given by

4

&.,= Z(&v;)'.

In general, the exchange which is compatible with the tetragonal symmetry is given by"

Equation (5b) is reduced to (5a) when a = 5 = 1. It has been shown by Bruce'0 that in case of cubic sym-
metry, the anisotropic exchange is an irrelevant variable in the e expansion. We assume that the
anisotropic exchange is an irrelevant variable in our case too, and discuss the critical behavior of the
Hamiltonian (1) with the isotropic exchange.

The Hamiltonian (1) describes transitions which correspond not only to the reciprocal-lattice vector
k =(~, -„-,'}, but to a more general class of reciprocal-lattice vectors, k = (g, g, 0) and k = (g, f, —,"), where
0 & )&1. For gg 4, the term (4c) is no longer an invariant under the space group P4 /mnm, and there
exist only two independent fourth-order invariants (4a) and (4b). For such a transition, the system
will be described by the Hamiltonian (1) with w =2v. It is found that the fixed point of the Hamiltonian
(1) which is stable to lowest nontrivial order in e satisfies w*= 2v*. This point may, therefore, de-
scribe the critical behavior of transitions associated with the more general class of reciprocal-lattice
vectors discussed above.

Using the c-expansion technique introduced by Wilson and Fisher, '" and assuming a small momen-
tum cutoff b ', one may keep only terms of order 1nb in the recursion relations for u', v', m', and
terms of order 5'lnb in the recursion relations for r'. The following recursion relations to order ~'
are obtained:

~' = g' "[g+ (24u+ 12m + 2ur)A(r) —(192u'+ 96m'+ 192uv + 8w'+ 32um)B(r)) + O(e'),

u' = b ' ' "[u —48u'+ 24uv + 4um)K, Inb + (21 x 2'u'+ 9 x 2'u'v + 9 x 2'uv'+ 3 x 2'u'm + 24m'u)K, ' Inb) + O(e'),

e ' = 5 ' '"[v —(36v'+ 48uv+ w')K, Inb

+(2Vx '2'u~+9x2'ue'+2Vx2'v' 4+8uw'+96uv~+24~'v+8m')Z 'lnb)+O(e. '),
gg' = b' '"[w —(48um+ 24vw+ 8w')K„inb

+ (27 x 2'u2go + 15 x 2'zo 2u + 27 x 2'uv xv + 9 x 2'm v + 9 x 2'auv'+ 40m )K4 lnb ]+O(& },

where

(6)

~ = (48u'+ 48uv+ 24m'+ 2u'+ Buu)K, '+ O(~'), (7)

~(r) and B(r) are the integrals over the propaga-
tor, and K„ is the angular integral in d dimen-
sions. "" The recursion relations (6) have eight
fixed points. The u*, v*, zv*, and the eigenvalue
exponents X;, i = 1, 2, 3, for each fixed point are
given in Table I. (The exponents are denoted by
A.„, X„, X„when the eigenvectors are u, v, and
xe, respectively. ) The X,.'s are obtained by lin-
earizing the recursion relations (6) and diagon-
alizing the linearized relations. It is clear from
Table I that the only fixed point which is stable
(corresponds to negative X,'s) to lowest non-
trivial order in e is the tetragonal point II (point
No. 8). Also, this is the only point which is
stable at e = 1. All the other points, except point
No. 4, are unstable for q ~ I. Point No. 4 has a

v= g(1+ 4E+486 )+ O(E )q

E48+ O(t ), (9b)

These exponents are equal to those of the n= 4
isotropic fixed point (but they may be different in
higher order in e). For e =1 one obtains

v=0.70, g =Q.Q2 (10a)

marginal operator at e = 1 (corresponds to the
eigenvalue A, =0), and is unstable for e &1. The
stability of this point at e = 1 should be determined
by the next order term in c.

The critical exponent v is given by

1/v = 2+ 5q —(24u*+ 12m*+ 2w*)K„+ O(es). (8)

Equations (7) and (8) give, for the tetragonal
point,
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TA]3LE j:. The fixed points and the eigenvalue exponents of the Hamiltonian (1) to second order in c.

No

2.

Fixed Point

u*=v*=w*=0
*-0~ *- ' +

36K 36 ' 27K
d

Type

Gaussian

Is ing

Eigenvalues

= c
w

1 19
3 81

1? 2=-c+ —c
v 27

3. * — *
72K 72'27K n=2 Cubic

1 19 2 17—E' ——F A = -6 + —6
u 1 3 81 2 27

4.

c 17 2
12K 9 ' 36K

d 4

* *
40K 200K

d 4
n=2 Isotropic 1 28

U 5 100
2 g ~+ ~21 1

1 5 5

5.

6.

*= ~
20K 100K

d 4

* * — *
48K 48~K

d 4

c 10w*= 0 u*= --—+

2

72K
4

n=4 Isotropic

n 4 Cubic

= -c+ —c3 2
2 5

= -e+ —c13 1
u 24 v w 6

1 2 13= -g+ —c
w 6 1 24

1 2
2 6

7.
24K ' 48 ' 3K

4 4
n=4 Tetragonal

1= —c2 A =- —c- A = -e+ —c
1 6 2 6 3 24

c 10
48K 48 K

d

62

8. w* = s2' v*1 2
24K ' 48K

4 4
n=4 Tetragonal + ~22

3 24

1 1*
48K 48 8K

d 4

and using scaling relations

p= 0.39, y = 1.39, a= -0.17, 5 = 4.46. (10b)

If one calculates the ~,.'s to higher order in e,
one may find that the tetragonal point II is un-
stable at a=1, and that the critical behavior is
determined by some other fixed point. It would
thus be interesting to determine the critical ex-
ponents experimentally, and compare them with
the calculated results.

I would like to thank Dr. M. Blume, Dr. V. J.
Emery, and Dr. S. Krinsky for many illuminat-
ing discussions and Dr. J. D. Axe, Dr. P. Bak,
Dr. R. Pynn, Dr. S. M. Shapiro, and Dr. G. Shi-
rane for discussing the experimental data. I
would also like to thank Professor M. E. Fisher
for his comments.

Note added. —After the completion of this work,
I have learned of a work by Alben, "where he dis-
cussed, within the Landau theory, the existence
of n=4- or 8-dimensional order parameters in
type-II antiferromagnets. I would like to thank
Professor Alben for sending me his reprint.

*Work performed under the auspices of the U. S.
Atomic Energy Commission.
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We detected and identified He ions, predominantly ~ particles, in the reaction ~ + Al
He+X at E~ =70 MeV. The differential cross section at 90' is 6+3 mb/sr in the energy

range EH, =5.5-30 MeV. The He yield decreases from 7 to 25 MeV, where it approaches
zero.

In several recent nuclear reactions wwith pions, ' '
kaons, ' and protons, "the removal of one or
more "n" clusters is strongly observed. Several
theoretical suggestions" have been made to de-
scribe the mechanisms for the strong emission
of n particles in pion-nucleus reactions. In most
of the experiments with pions and kaons, prompt
y rays from residual nuclei formed in the re-
a,ctions were detected. The "removed equivalent
cluster" was not directly identified, and was ei-
ther single nucleons or heavier particles. More-
over, by this y-ray method, reactions leading
directly to the ground state are not observed.
Some of these cases have been observed" via ac-
tivation methods. However, a emission often
leads to stable residual nuclei and in these eases
this channel cannot be observed. Castleberry
et a/. ,

"working with stopped negative pions, ob-
served charged-particle emission but did not see
He ions. Gismatulin, Ostrumov, and Plyushchev"
observed n tracks from light emulsion nuclei at
E„+—-112 MeV, with poor statistics, and found

a relatively low yield for n emission. On the
other hand, Ashery eI; a/. ' found strong lines cor-
responding to "n"-cluster removal at E, =25
MeV, which is below the threshold for the knock-
out of four individual nucleons. However, this
can be taken as a proof of n emission only on the
assumption that the pions were not absorbed.
Thus, to date, recent reports on the strong emis-
sion of "'n" clusters in the interaction of pions
with nuclei were based on assumptions. Our
primary purpose here was to provide a reliable
direct proof for e-particle emission in pion-
nucleus interaction, and to measure their energy
spectrum and cross section.

Our report here describes the detection and
identification of He ions emitted in the reaction

+"Al-He+I, thus providing a direct observa-
tion of emitted He ions and of their energy spec-
trum. We used the secondary m beam from the
electron linear accelerator at Centre d'Etudes
Nucldaires de Saelay. The energy of the pions
was 70 MeV, with b.p/p = 5/o. The beam intensity


