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ly excited atoms in some experiments, because
of presumed inefficiency of production, could
lead to serious error.
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Quasielastic neutron scattering experiments on terephthal-&is-butylaniline (TBBA) show
that the phenyl rings do not have a strongly preferred orientation in the smectic-H {tilted
B) phase. This suggests that the Meyer-McMillan model is not quite adequate for this
particular system.

Recently, Meyer and McMillan' extended to
smectic-8 and -H phases a molecular theory'
of smectic-C and -A phases, by including a soft-
core repulsive interaction in addition to the di-
pole-dipole interaction used previously. In this
theory, this dipole-dipole interaction plays an
essential role and is responsible for the tilted
character of the smectic-C and -H phases by ori-
entational ordering of the dipoles. An attempt to
confirm the orientational order experimentally
was recently made by NMR' on a series of smec-
tie compounds. It was found that, while some
smectic-8 phases [in particular that of terephthal-

his-butylaniline (TBBA)]are consistent with the
idea of a partial freezing out of rotation about
the long axis, no freezing of this rotation could
be observed in smectic-C phases. 4 For similar
reasons we have recently studied' the smectic-H
phase of TBBA (in Ref. 5 this was simply called
the smectic-8 phase; other names have been
used') using high-resolution (luasielastic neutron
scattering. The data were found to be consistent
with the idea of rapid, uniaxial rotational diffu-
sion of the molecules about their long axis, im-
plying a lack of orientational order. In this Let-
ter, we extend our interpretation of the same
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data in terms of a model permitting partial ori-
entational ordering for the phenyl rings and for
the N= C-H groups. ' We find that the value of
the orientation parameter consistent with the ex-
periment is much smaller than that predicted by
the above-mentioned theory and, in fact, the best
fit is obtained for no orientational order at all.

In a hydrogenous system, the scattering of neu-
trons is almost purely incoherent. The scatter-
ing function Sf„,(Q, ~) is the Fourier transform
in space and time of the self-correlation function

G,(r, f) of the protons. In the case of a uniaxial
rotational motion, difficulty is encountered in
calculating this self-correlation function when an
order parameter is introduced. A treatment of
this problem will be presented elsewhere. ' How-
ever, the amplitude Ac(Q) (usually called incoher-
ent elastic structure factor) of the 6(&u) term
which appears in any scattering function of a
purely rotational model' is the spatial Fourier
transform of G, at infinite time, and may be cal-
culated without resolving the equation of motion.
We have

A,(Q) = (fG,(r r„~—) exp(iQ ~ r) d'x).
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FIG. 1. Elastic to elastic-plus-quasielastic intensity
r3tio as a function of Q for DTBBA. Circles, data cor-
rected for multiple scattering; triangles, data not cor-
rected for multiple scattering (same points as in Ref.

The brackets indicate an average over the initial 5, Fig. 2}. The full lines represent A (Q} calculated
positions r,. The expression of A (Q) for the case from relation (6} for N=6, a=2.50 A, and p'=1.4 and 0

OI uniaxial rotational motion between N sites The dashed line represents Ao(Q} calculated from rela-
tion (8) for the same values of N and a.

equally spaced and weighted on a circle was giv-
en in Ref. 5. Let us now extend this picture to
the case of nonuniform weighting of N sites on the
circle. In this way we obtain a model which permits us to take into account the theory of Ref. 1.

Let y be the angle characterizing the position of a proton on the circle and y, its value at zero time.
If the orientational distribution is peaked at y=o, we can write

G,(r —r„~)=A Q exp[P' c(o2s&j/N+ y,)]6(r —r,),
where, following Ref. 1, in the case of a smectic-II phase, t}' is given by

l3'= pp, So/kaT.

(2)

In these expressions, p, is the dipole moment, 80 is a parameter related to the two-particle correlation
function, and P is the orientational order parameter [P=(cosyAv]. In addition, the r; define the posi-
tions of the N sites on the circle of radius a, and A is a normalizing constant. To R very good approxi-
mation (better than 10 4 for X =6), A is given bys

A =[NIo(P')] '
(4)

where I, is the zero-order modified Bessel function of the first kind. Using Eqs. (1) and (2), the calcu-
lation of Ac(Q) can be performed exactly. The initial distribution f(po) is chosen such that

f(V'o) = [2&I.(&') l
' exp(P' cos V'.).

The result, after powder average, is'

(6)
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For P'=0 (no orientational order), one recovers
the result of Ref. 5 [Eq. (2) for l =0].

The numerical value of P' for TBBA can be ob-
tained from Ref. T. As p, S 2kgTp, c, where TAc
is the smectic-A-smectic-C transition tempera-
ture, we should have

For TBBA, TAc=445 K. The experiment was
performed at T=392 K. With P=0.6 (from Fig.
7 of Ref. 1), we obtain P'=1.4. This value cor-
responds to the orientational order of the dipole
moments predicted by Ref. 1.

We now reexamine the experimental data on the
partially deuterated TBBA (DTBBA) sample which
were presented in Ref. 5. The experimental val-
ues of A, (Q) are shown in Fig. 1, corrected" for
multiple scattering, together with the earlier un-
corrected data (from Ref. 5) for comparison.
These points represent an average incoherent
elastic structure factor of all the protons of the
DTBBA molecules. The DTBBA molecule con-
tains ten protons, namely the four protons of the
central phenyl rings, two protons on each exter-

nal phenyl ring, and the two protons of the N= C-
H groups. ' If we assume that all these protons
are dynamically equivalent regarding rotation
around the molecular axis (e.g., if the molecule
is rigid), the average structure factor should be
given by Eq. (6) with P'=1.4. Such a curve, using
an average gyration radius of 2.5 A, is represent-
ed in Fig. I and is definitely inconsistent with the
experimental data. A possibility for reducing
this discrepancy is to assume that some or all
the protons of the phenyl rings can perform cy-
lindrical, "isotropic" (P' = 0), rotational motion
and that only the protons of the N=C-H groups,
associated strongly with the molecular dipolar
moments, show the orientational order. How-
ever, in this case, an isotropic motion of the
central ring is rather unlikely because of steric
hindrance. For the two external rings, such a
motion seems possible. In this case, the theoret-
ical average structure factor would be

The corresponding curve is drawn as a dashed
line in Fig. 1, and, again, the discrepancy is
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FIG. 2. Quasielastic neutron spectra of DTBBA in the smectic-H phase {119'C). Incident wavelength 9.48 A.
Scattering angles: 25, 64.1, 85.9, 104.9'. The points are experimental, corrected for multiple scattering; the
full lines represent the best fit of the "isotropic, " uniaxial rotation model of Ref. 5, using a =2.56 A, y& =1.49
x10 sec, snd u =0.126 A . The separation between purely elastic aud quasielastic contribution is also shown.
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rather great. Consequently, the orientational
order parameter (if any) is probably much small-
er than predicted by the theory of Ref. 1. In fact,
fitting expression (6) to the experimental points
corrected for multiple scattering and taking P'
and a as parameters, the best fit is obtained for
P'= 0 and a = 2.53 A, in excellent agreement with
the analysis of Ref. 5. To further emphasize
this, we have fitted the uniaxial-rotational model
presented in Ref. 5 to the corrected experimen-
tal spectra. In Fig. 2 we show four out of the ten
spectra, which were all treated in a simultaneous
fit." The best fit was obtained for a = 2.56 A, T,
= 1.49 x10 "sec, and u'=0. 126 A', again in good
agreement with a simpler analysis based on

graphical integration and linewidth measure-
ments. " This shows that not only is the incoher-
ent elastic structure factor inconsistent with the
high orientational order of the molecules within
the plane perpendicular to their long axis, but
also that the actual neutron spectra are quite
consistent with the presence of rapid "isotropic"
rotation around this axis." We can thus conclude
that the Meyer-McMillan theory is not very ade-
quate to describe the smectic-H phase of TBBA.
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for his support and helpful discussions. Vfe thank
Dr. R. E. Ghosh for advice concerning the multi-
ple-scattering analysis.
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