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If we interchange the roles of I' and k4 and divide by 2, the second and third integrals can be ex-
pressed as an integral over the domain where the triangle inequalities are satisfied and an integral
over the domain where the inequality E+k4&k, is violated, respectively. Combining the second with
the first integral we have

r], = —(2'a'/9&) [J k,(( k,) dk, fk,g(k,) dk, fF&(F) dF(n —,'m)—

+ J k,g(k, ) dk, fk,y(k, ) dk, fEy(E) dE( —,'~-)].
If we now permute k„k4, and I"'so that 04 and E successively take on the role of k„wemay write

11,= —(2'a'/9m) Ukase(k~) dk2 J k44(k4) dk4 JEg(F) dE[ , (n -+ p+r) —-'m]

+ f k, y( k) dk fk g(k ) dk fEy(F) dE(- —,
' v)),

where the second integral above is taken over the domain where at least one of the triangle inequalities
is violated and P and y are the angles between k, and k, and between k, and E, respectively, in the tri-
angle formed by k„k4, and I". Since the sum of three angles of a triangle is r, the integrand in both
integrals is the same and is equal to ——,'&, and the sum of the two integrals is

q2 = —(2'a'/9m) f k2&(k2) dk, f k4&(k4) dk~f Eig(E) dF(- —,
' v).

Taking note of Eq. (3), we see that this is equal to
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The expression for the coefficient of & in the p expansion for the critical exponent q of
the Ising model has been obtained by Shukla and Green within the incomplete-integration
method of Wilson. It was left by them in the form of an unevaluated integral, which ap-
pears to depend on parameters characterizing details of the renormalization-group pro-
cedure. The integral is evaluated here and found to equal ~, regardless of the values of
those parameters.

In a recent Letter, ' Shukla and Green presented a low-order-in-& solution to Wilson's incomplete-
integration equation formulation of the differential renormalization-group problem for the continuous
version of the Ising model. The solution for the second-order-in-& contribution to the critical expo-
nent g was left in the form of an unevaluated multiple integral in which the integrand had a nontrivial
dependence on a constant a and a function P(k). If the result of integration were to depend on them, the
critical exponent g would depend on the details of the renormalization-group procedure, a highly un-
satisfactory result. In this note an evaluation of the integral is presented. The result is found to be

—,'~ independent of both a and P(k).
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The expression to be evaluated is

d0(&) d'k, d'k„
v'P

with

F= Ik—, +xk I,

A '=12 f[f'~q(~III)d~]q(k)d'k.

g(k) as defined by Shukla, and Green may be shown to be given by

e(lkl) = Ikl 'dv(lkl)/dlkl,

with

y (x) =x'/2[ax'+ c (x)],

(3)

(4)

c(x) =exp[- f (1/X)Pb)4']. (5)

a is a positive constant and p(x) is a positive, monotonically increasing analytic function of x2 with p(0)
=0. The expression for A is readily evaluated:

A '=24m' f [f O'P(k')dk']kg(k)dk

=24 '
' —, dk' dkdk' dk

~ OO k—24m l p(k) dk 12m [y(~) y(0) ] ——

We have used the fact that y(0) =0 and y(~) = (2a) '.
To evaluate the other integral in the expression for g we first set aside the integration over A. and

write the remaining integrals in the form

X 1x(r, ) exp(ik, F,)x(r, ) exp(ik, ~ r, )x'(r, ) exp[i(k, + Xk, ) ~ r, ]d'k, d~k, d'r, d'r, d'r„
with

x(F) =(») 'Je * '((lkl)d'k

and

r -cur 1 d0 4
(2~)' ~ '

Performing the integration over k, and k, in Eq. (7) we obtain

(2m)'A. J5 (r, —rs) 5 (r, —AF~)x(F, )x(F,)x'(AF, )d~r, d4r2d r~ = (2m)'A. Jx(F)x(XF)x'(r) d r

Inserting our expression (3) for P(r) we have for x(r)

(7)

x(r) =- 42p2 ~ [Jo(kr)+ J,(kr)]k dk2m'

d r

g[Z, (kr) +J,(kr)] k'rp(k) )dk —,' 2k[JO(kr) +J,(kr)]q(k) dk

1 1 df(r)
8v' y dy

k'y (k)—„[Jo(kr)+:J2(kr)]dk
1

~

8



VOLUME 34, NUMBER 7 PHYSICAL REVIEW LETTERS 17 I'EBRUARY 1975

where

(12)

By(kr) r By(kr)
Bk k

f(r) =r'f [Zo(kr)+J2(kr)]kcp(k)dk,

and J,(x) and J,(x) are zero- and first-order cylindrical Bessel functions. We have used the fact that

The rigorous neglect of the integral of the exact differential on the right-hand side of Eq. (11) requires
the insertion of a convergence factor. We may neglect that factor for our present purposes and we will
perform similar integration by parts below.

An important property of f (r) is that it vanishes exponentially as r- ~ [for smooth P(k)]. We also
have

f (0) = I /O.

The integration over A. is performed as follows:

1 "", 1 ""df(r'), 1 1
Xx(Xr)dX= —, r'x(r')dr'= », dr'= — » f(r)-- .

Jo

We express x'(r) in terms of f (r) as follows:

1
I

1 - dg, .-„.« l,-e' '" - dgx'(r)=, , [g ~-~
e' '" d'k=, I = -~, ~k, [ ~-

~

exp[i(k, —k) ~ r, ] d'r, d~ k, d'k

4@2" 1 "- d( (' ~ r, d'k

The integral involving Ikl dg/dIkl may be shown, via integrations by pa.rts, to yield

2m' d, d, , 2~' dF(r, )
Sr, dr, dr, ' r, dr,

The angular integration over r, yields

1 "" 1 dE(r, )x'(r) =, , '- dr„
0 ~m +1

where r =max', r, ]; Using Eq. (15), Eqs. (10) and (13) yield for the integral of interest

(13)

(14)

(1 5)

g p = Qy'

these final integrations are straightforward to perform. The result is

6a'

Inserting this, and our result (5) for A, into Eq. (11) yields g =e'/54.
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