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crease in optical field strength. Specifically, for
our experiment the product of the level shifts of
the 3S and 4D states is proportional to the two-
photon transition rate. Optically induced energy-
level shifts might also find practical applications.
The intensity dependence of the shifts provides an
accurate method for measuring transition dipole
moments. In addition, the level shifts form the
basis for a kind of Stark spectroscopy. Although
all the hyperfine states of the 3S ground state had
essentially equal shifts, hyperfine states of the
4D level have different shifts and hence should
split. This splitting was masked by the line-
broadening mechanisms discussed earlier but
would be observable in an experiment utilizing a
sodium atomic beam. Stark splitting of the 3S
ground state could also be observed if the mistun-
ing of the 589-nm light from the 3I' resonance
were made smaller than the hyperfine splitting
of the 3I' state.
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The sinh-Poisson equation describing two-dimensional steady-state distributions of
elements with a logarithmic interaction potential (charged filaments executing guiding-
center motion; quantized vortex lines) is solved numerically. Multiple solutions are
obtained for the case of negative temperatures. These have a simple thermodynamic
interpretation which agrees with the results of numerical simulations. The results are
related to numerical experiments and observations of vortex filaments in liquid He4.

It has been shown that statistical systems with
bounded phase space can have negative-tempera-
ture states. ' One such system is an aggregation
of charged filaments executing guiding-center
motion' within a finite region having conducting
boundaries; another, equivalent mathematically,

is a collection of interacting quantized vortices
enclosed by reflecting walls. Numerical' ' stud-
ies of such systems reveal that they sometimes
evolve to steady states characterized by large-
scale charge circulation (in the first case) or
widely separated regions of oppositely directed
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vorticity (in the second). These results are con-
sistent with the conclusion, reached on general
thermodynamic grounds, ' that a negative-temper-
ature system displays a tendency to fly apart.
The phenomenon of small vortices clumping into
larger ones is not observed when initial condi-
tions corresponding to an ordinary positive tem-
perature are chosen.

Several analytic studies "' have been carried
out in order to clarify the statistical properties
of negative-temperature systems. In particular,
Joyce and Montgomery~ ' have used the combina-
torial method of Boltzmann to derive an equation
for the electrostatic potential y corresponding to
the most probable steady state (or equivalently,
the stream function of the most probable vortex
distribution). This equation may be written

x [n, exp(- epy) —n exp(epy)],

where y is the scalar potential, e the charge,
and e/l the charge per unit length of a filament,
the m, are constants related to the total number
N of filaments of either species by

n, fd'r exp(v pep) =N,

and the inverse temperature P is determined by
specifying the energy E,

Since —X'~ p= (tcT) ', where w is Boltzmann's
constant (see Ref. 4), X'&0 formally describes
negative temperatures. As a boundary condition
on P we assume g = 0 on the periphery of a rec-
tangular box of dimension X by F; where no val-
ues are explicitly stated X= K= 1 will be under-
stood. The additional requirement of equal total
numbers of positive and negative charges (n, =n
=no) implies f j dxdy( = 0 must hold within the box.

The form of Eq. (4), together with the boundary
conditions as stated, suggests the possibility of
bifurcated solutions. "' The one-dimensional
Cartesian version of Eq. (4),

(d 'P/dx') + X' sinhg = 0, (4')

5.0

with g(0) = ((1)= 0, is analytically solvable. '~ Some
solutions are displayed in Fig. 1. There are an
infinite number of discrete modes for each value
of A. , but the types of modes which are accessible
depend upon A. . The "s"mode, for example, does
not exist for A. &m. For X &2m, neither the "s"
nor the "P" mode exists. The critical values of
A. are calculable from the linearized version of
Eq. (4') with the same boundary conditions as in-

The derivation of Eq. (1) is valid only for P & 0.
This equation is the same as that obtained if

one looks for stationary positive-temperature
states of any system of electrostatically interact-
ing oppositely charged particles (of arbitrary fi-
nite mass) using Boltzmann statistics, and hence
represents an extension of the Debye-Huckel the-
ory, It also describes the magnetic equilibrium'o
of a relativistic beam consisting of equal-temper-
ature ion and electron components with the same
rest frame. Behavior resembling that seen in
the simulations of Joyce and Montgomery has in
fact been observed by Lee and Lampe" in study-
ing the filamentation of relativistic beams. In
these examples the two components can in princi-
ple have different temperatures (p, c p ). Some
of our results apply as well in this case, but we
will not discuss them explicitly.

Equation (1) is conveniently rewritten as
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which we take as our standard form. Here g
= —epp ——, ln(n, /n ) and X' = —8wp(n, n )"'e'/l.

(4) FIG. 1. Plots of g versus x showing s, p, and d
modes for the one-dimensional case [Eg. (4')]. Three
different values of A. have been used so that solutions
can be displayed using the same scale.
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FIG. 8. E (arbitrary units) versus A, for the modes
s-s, s-p, diagonal s-p, s-d, and diagonal s-d (here
labeled s, p, p', d, and d', respectively).

FIG. 2. Six solutions of Eq. (4) obtained with X =19.0,
designated (a)-(f) s-s, p-p, d-d, diagonal s-p, diag-
onal s-d, and diagonal d-d, respectively. Dashed lines
are used to represent negative contour levels.

dicated. This is because the maximum ampli-
tude, g, is a decreasing function of X and van-
ishes as X approaches a particular A, , for each
mode. The qualitative behavior of amplitude as
a decreasing function of A. for each mode carries
over to the two-dimensional solutions as well.

The two-dimensional equation is solved by a
numerical technique, the details of which are re-
ported elsewhere. ""It permits one to generate
nontrivial solutions of Eq. (4) to any desired ac-
curacy. It appears that an infinite number of
such solutions exist, as in the one-dimensional
case. These solutions can also be characterized
by the type of internal symmetry and the number
of nodes, or "quantum number, " in each coordi-
nate direction.

Figure 2 reproduces a series of contour plots
of solutions obtained with A. '=19.0. Solutions (a),
(b), (c) are referred to as s-s —,p-p —,and d-d-
wave solutions. (Evidently the s-s —wave solu-

tion does not satisfy the zero total-charge condi-
fion, but is included for completeness. ) The high-
er-order solutions may be viewed as composed
by patching together increasing numbers of s-
wave images. Since (= 0 on each symmetry line,
each subdivision of the box behaves like an inde-
pendent "cell." One can construct mixed solu-
tions (s~, s-d, etc.) by an obvious extension of
this process.

Figures 2(d)-2(f) show contours of solutions
with diagonal symmetry. Just as with the family
2(a) —2(c), higher-order solutions can be found

by patching together "diagonal p-wave" or "diago-
nal d-wave" solutions. The class of solutions
which can be displayed in this fashion is limited
by numerical considerations. " In principle, how-
ever, each such family contains a countably in-
finite number of members, and there may be oth-
er solutions as well.

The solutions shown in Fig. 2 each have a dif-
ferent energy E. By varying ~ we can trace the
distinct branches in a AEdiagram (Fig. 3.-) until
stymied by computational difficulties. Each
branch extends down to the A. axis, where the in-
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FIG. 4. Log-log plot of mode energy versus wave
number for the diagonal s-p state with A.

~ = 15.0. The
str aight line through the points is obtained by a least-
squares fit; its slope is —2.9, indicating a spectral
den. sity

tercept can be found from linear theory (sinh(
= g), and up to infinite E in analogy with the one-
dimensional solution. The general character of
these traces is in agreement with results found

by analytic methods. "
What is the physical significance of this pleth-

ora of solutions of a mathematically well-posed
problem'? The argument leading to Eq. (1) speci-
fies that entropy S be maximized by y; evidently
S has infinitely many local maxima as a function-
al of y, to each of which corresponds a solution. "
From the derivation of Eq. (1), it is easy to show
that the entropy S of a solution g is given to with-
in an additive constant by

S= lnW =2PE =—,—E, (5)
4mB np

where W is the a priori probability of the config-
uration. Hence for np and E specified TV Wp

&&exp( —cA.'), c =const&0. The form (5) of the en-
tropy is to be contrasted with that found for neg-
ative-temperature states of a two-level system,
for example, of nuclear spins in an ionic lattice. "
There S=Sp —constE', and the energy varies only
between finite limits +E

To compare our results with the simulations of
Joyce and Montgomery, we have redone the anal-
ysis for a —,'& 1 box, equivalent to that used in the
simulations. For equal numbers n, =~ the branch
with maximum entropy is the s-P solution. For

X'=29.0 (corresponding to E =98.85), fair agree-
ment is obtained with the result shown in Fig. 2

of Ref. 4. Since the simulation employed finite-
sized particles and periodic boundary conditions,
a temperature determined from a trace like those
of Fig. 3 will not be reliable. The best way to as-
sign a temperature to the result of the computer
experiment would appear to be by fitting the en-
ergy spectrum of the theoretical solution to the
observed spectrum.

We have also Fourier analyzed the solutions de-
scribed above. Figure 4 shows the result for the
diagonal s-P state shown in Fig. 2(d), with A.

'
=15.0. Mode energy is plotted against k, the
magnitude of the wave vector, for 0&k„&2m, 0
&k, ~ m. As can be seen, the points fall approx-
imately in a straight line. A least-squares fit
yields a slope of —2.9, in good agreement with
the k ' spectrum predicted by continuum theory
for enstrophy cascade. "

In conclusion, we wish to call attention to the
fact that the vortex filaments recently observed'P
in liquid He can be in negative-temperature states.
For the present theory to apply, only the lowest
quantum levels (circulation =+A/mH, ) must be ex-
cited, in equal numbers, and the interaction en-
ergy must be positive. Such a system could then
be expected to evolve to a state with just two re-
gions of vorticity, one of either sign. In fact,
the detection of such a state would be convinc-
ing evidence that the aggregate of filaments pos-
sessed a negative temperature.

We wish to express our gratitude to Dr. D.
Montgomery and Dr. L. Baker for several useful
discussions.
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xperiments is calculated in the 4 phase
laxation-time approximation, Spin-wave
It is pointed out that Leggett's result for
ge of frequency,

Balian-Werthamer (BW) state], which seems to
be more and more supported by experiments.
This calculation is done in the regime of small
departure from equilibrium. For spin-echo ex-
periments, this means that the present results
are only relevant to small tipping angles. Since
he calculation of the spin-diffusion coefficient
s merely an expansion to second order of the

spin-wave dispersion relation for long wave-
engths, my results provide, at the same time,

the spin-wave attenuation at long wavelengths in
a magnetic field. Finally, it is pointed out that
Leggett's result for the NMR lineshift' is true
beyond the hydrodynamic limit ~z&D «1 and ex-
ends to the eollisionless limit if terms of order
~o(T)/~q]' are neglected (ar„ is the Larmor fre-

quency).
The formalism that is used has been introduced

already in preceding publications. ' ' It is
based on the kinetic-equation method and works
only in the regime ~, qv& «&, where & is the
order parameter. In order to save space, I will
not rewrite all the basic equations which are dis-
played in Ref. 3. However, I want to take into ac-
count collision terms in the kinetic equation. For
his purpose, I will approximate the collision
erms in the same way as in Ref. IO and write

the kinetic equation as

The spin-diffusion coefficient for spin-echo e
and in the E phase of superfluid 3He, using a re
attenuation is discussed for long wavelengths.
the NMR lineshift is true over the complete ran

Spin waves in superfluid 'He have recently been [
raising a growing theoretical interest. ' ' How-
ever, the direct experimental detection of propa-
gating spin waves does not seem to be very easy,
at least in the A. phase. The reason is that the
spin-wave frequency has a lower bound which is
the NMR longitudinal frequency uo(T). From the t
spin-wave velocity, it is found that the character- i
istic length in experiments is of order of 0.1 mm.
This makes an experiment difficult although not l
impossible.

A less direct way of showing evidence for spin
waves is to study spin diffusion, using the well-
established spin-echo technique. This has been
used successfully in normal 'He: For still un- t
clear reasons, spin-wave propagation (in a mag- [
netic field) ha, s not been detected directly, but
the very good agreement between theory" ' and
experiment' in spin-echo experiments leaves
little doubt as to the actual existence of spin
maves. Extending this idea to superfluid 'He, I
calculate in this paper the spin diffusion coeffi-
cient in a magnetic field in the superfluid phases
by using a relaxation time approximation. I
make the usual assumption that theA phase is
the axial state [Anderson-Brinkman-Morel t
(ABM) state] and the B phase the isotropic state t

&ud v~ —Gv„q;BE„/Bh; —ibEox &v„= —ice„/vo(T)

with the same notations as in Ref. 3 and

~E'= —(4/E ) '- (& —& /&. )d. (d '
r. ')/~&. ~',


