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We report partial densities of states of overlapping bandlike P states and localized d
states in several insulating transition-metal oxides which have been determined from fre-
quency-dependent photoemission spectra taken in the range 5-90 eV. We observe that p-
band features become weak relative to d-state and satellite features at high frequencies,
i.e. , at x-ray photoemission frequencies. Partial d-state densities together with a ligand-
field description are reported which give a basis for evaluating recent theoretical descrip-
tions of transition-metal oxides.

While the electronic properties of insulating
transition-metal oxides containing partially filled
3d" shells have been the subject of many theoret-
ical, ' ' x-ray photoemission, ' ' and optical stud-
ies, '9 and are of current interest in surface ad-
sorption and/or oxidation studies, ' such basic pa-
rameters as the energy separations of the local-
ized Sd states from the 2p bands as well as the
spectral features and level widths of the overlap-
ping 3d states and P bands have not been deter-
mined. X-ray photoemission measurements have
been reported which clearly see d-state features' '
(but cannot usually see p-band features), and the
suggestion has been made' that such features can
be identified with the crystal-field-split states of
the 3d" ' final states.

In this Letter, we report photoemission-de-
rived partial densities of states for 3d states and

2P bands in insulating NiO, CoO, Fe„O (x= 0.9-
0.95), MnO, and Cr,O„which typically show
overlapping p- and d-state densities. These par-
tial state densities are determined from photo-
emission energy distributions (PED's) measured
in the energy range 5 ~k~ s90 eV using synchro-
tron radiation. For these compounds, we observe
partial d-state emission spectra characteristic
of localized (-1-1.5 eV wide) d orbitals which
can be well described using a ligand-field-theory
description of the localized 3d" ' final state. Al-
so, significant 8( -dependent trends in the PED's
are seen, with p-band emission becoming very
small at x-ray frequencies while multielectron-
satellite emission features become very strong.
Thus care must be exercised when interpreting
x-ray-photoemission spectra for such compounds.
Also, several recent theoretical descriptions' '
are described in light of our data.

PED's were measured in the range 5shw - 90
eV using synchrotron radiation and a previously

described photoemission-spectrometer system. "
Single NaC1-type crystals of NiO, CoO, Fe„O
(x= 0.9-0.95), and MnO of area - 4 mm' were
cleaved [(100) face] and measured in situ at pres-
sures of - 2 &10 "Torr."

Several PED's for NiO(100) are shown in Fig. 1
together with an x-ray PED' in order to illus-
trate our method for separating the photoemis-
sion partial p- and d-state emission intensities,
which is based on the characteristically different
h&u-dependent photoemission intensities of p and
d states in the range -10-90 eV." Recently, S(d-
dependent photoemission measurements (employ-
ing Ne and He resonance lamps and Al x rays)
have been used to study the hybridization of
closed-shell P and d levels (which are close in
energy) in several Cu and Ag halides. "

For the total primary valence-electron emis-
sion Nr(E, v), we can in general write Nr(E, &u)

= N~(E, &u)+ N„(E, &u), where N~ and N~ are the
(overlapping) p-band and d-state emission spec-
tra and I.' is the electron energy. Also, at suf-
ficiently high photon energies (ke ~ 20 eV for¹0,etc), we can approximately factor N„and
N~ into h&u-independent spectral shapes N„(E)
and N~(E) and 5& -dependent intensity factors
C&(~) and C~(&u). That is, we assume" Nr(E, &u)- C „(~)N,(E) + C,(~)N, (E).

A prescription for determining X„and &~ for
NiO is as follows. Primary emission is first
determined by subtracting inelastically scattered
secondary emission" (and multielectron satellite
emission) as shown for the R~= 30 eV PED.
Based on the overall Sw dependence seen in Fig.
1 and model calculations, ' ' the highest occupied
peak at 0 eV is essentially a pure d-like peak
while the -3-eV peak (pronounced for ku ~ 25 eV,
e.g. , see PED for 20 eV) is primarily a@-band
peak. We then determine A'„by taking a weighted
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FIG. j.. PHD's for NiO. The zero of energy is placed
at the d-state peak and EF, Ed, , and E& are the Fermi
energy, d-state edge, and P-band edge. Partial d-state
emission intensities (dashed lines) and p-band inten-
sities (broken lines) are shown (see text).

difference of two PED's (e.g. , for h&u, = 20 eV and

h&u, =40 eV) such that the p-band emission at E
= 3 eV vanishes. The resulting difference gives
us the spectral shape N„(E) of the d-state emis-
sion. N„ is determined by scaling N„ to the full
amplitude of the first d-state peak at 0 eV in
Nr(E, ~) and N~ = Nr -N, is then determined.

An important consistency check on this decom-

position method for determining N„and N~ is
given by repeating the above procedure for sev-
eral independent pairs of PED's over a wide
range of ken's and comparing the resultant N„'s
and N~'s. We have found this procedure to be
self-consistent for the transition-metal oxides
we have studied. A measure of this consistency
is illustrated for NiO in Fig. 1. Namely, the d-
state emission density N~(E, ~) shown is propor-
tional to the average N, (E) determined from sev-
eral pairs of PHD's for km=20, 30, 40, and 78
eV. We have subtracted this N, (E, ~) =C„(cu)N, (E)
from all four PED's, yielding four independent
N~(E, ~)'s which are all quite similar, as shown.

Before leaving Fig. 1, we point out two impor-
tant effects. The structure near 8 eV is identi-
fied as a multielectron satellite feature as pre-
viously suggested, ' rather than a p-band feature, '
since it has negligible intensity for S~ ~ 30 eV
and slowly increases at higher energies. Con-
versely, the relative p-band emission intensity
decreases with increasing Sw and becomes quite
small at Mg Kn (-1253 eV), i.e., the main 3-eV
p-band peak (estimated by our decomposition
method) is essentially not seen in the x-ray spec-
trum in Fig. 1.

For CoO, FeO, MnO, and Cr,O„a data anal-
ysis similar to that described for NiO has been
made, and d- and P-state partial emission inten-
sities are summarized in Fig. 2 for PED's at Sw
= 30 eV (at 40.8 eV for Cr,O,). In all cases, we
have placed the zero of energy at the center of
the highest d-state feature and EF, E~, and E~
denote the Fermi energy, d-state emission edge,
and p-band emission edge, respectively. All p-
band spectra are about 3 eV wide [full width at
half-maximum (FWHM)], with a p-band peak
from -3 to 5 eV below the highest d-state level
(-=0 eV).

As previously mentioned, we can describe the
partial d-state densities N„(E) for NiO, CoO,
FeO, MnO, and Cr,O, quite well using a ligand-
field-theory description in terms of 3d"- ' final-
state ionization potentials. Namely, a d electron
is photoionized out of the sharp 3d" ground state,
leaving the 3d" ' final state in one of several pos-
sible energy states. A fractional parentage meth-
od for determining the energies and relative
transition intensities of these atomiclike localized
final-state d-electron configurations is described
by Sugano, Tanabe, and Kamimura. ' In this lim-
it one may show that allowed 3d" ' final states
differ from the 3d" initial state by one 3d-elec-
tron orbital and have relative transition inten-
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FIG. 2. PED's, partial &-state intensities Nz(E), and
p-band intensitiesN&(E) for NiO, CoO, Fe„O, MnO,
and Cr203. The vertical lines denote calculated 3d" '
final-state ionization potentials (see text). The weak
features near 8-10 eV for CoO, Fe„O, MnO, and Cr203
are attributed to multielectron satellite peaks.

sities proportional to (2S+ 1)c'(f) where S is the
spin and C(f) the fractional parentage coefficient
of the final state If)."

We summarize ionization potentials (IP's) for
3d" ' final states in Fig. 2 (where the heights of
the heavy vertical lines are proportional to the
calculated transition intensities)". In our calcula-
tion, we have followed the nomenclature and de-

scription of Sugano, Tanabe, and Kamimura. '
In summary, for NiO, CoO, FeO, MnO, and

Cr,O„respectively, 3d" ground states are
Ni"(d', 'A, ); Co"(/f';'T, ); Fe"(d' 'T, ); Mn"(/f'
'A, ); Cr" (/f', 'A, ), and 3d" ' final states are
'T, [= Qe-V], 'E*[0.92], 2T, [1.64]; 'T, [-=0],
'T, *[1.03], 'T2*[1,42], T,[2.01], 'T, [2.11],
'E[2.31], 'A2[3.04]; 'A, [-=0], 'T, +[1.59], 'T, +[2.06J,
A, [2.53, E[2.53], 4T,[2.81], T,[3.13]; 'E*[=QJ,
'T,[1.56]; 'T, [-=Q], respectively. States with as-
terisks correspond to removal of an e, electron.
Final-state ionization potentials are given in
square brackets; they were obtained using Racah
exchange parameters B, for Ni" through Mn",
of =690, 660, 629, 598 cm ', respectively (i.e.,
-67-70%%u~ that of the 2+ ion"), to obtain best over-
all agreement with experiment. " In Fig. 2, if a
broadening of -0.5-0.75 eV (FWHM) is ascribed
to each calculated final-state IP, reasonably
good agreement is observed with the experimen-
tal N, (E) spectra. The Mn" spectrum suggests a
somewhat smaller (i.e.,

—
&& —,) emission intensity

for e, relative to t~ electron excitations; if this
is also true for NiO, CoO, and FeO, even better
agreement occurs.

Many theoretical descriptions of NiO and other
transition-metal oxides have been given [Refs.
1-4 and references therein]. We find our results
consistent with the qualitative hybrid model of
Adler and Feinleib. ' Recently, this hybrid model'
has been extended to consider various 3d-4s, 2p- 3d, and interionic transitions. However, com-
parison with our description indicates an error
in the latter work' in that 3d" ' final states are
taken to be the crystal-field-split terms of the
3d" ' ground state, rather than final states which
are coupled to the ground state by the one-elec-
tron dipole operator as we have described.

A promising recent one-electron approach for
studying transition metal compounds and surface
complexes is the self-consistent-field X method. '
However, comparison of our new results with the
most recent cluster calculation' for NiO [actually
for a (NiO, ) "cluster] shows a p-d separation
which is too large (- 4.5 versus 2.9 eV measured)
and an apparently incorrect ordering of the 3d
final-state IP's, with the e level -0.6 eV above
the t„& level rather than at or below the t, &

level.
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traviolet photoelectron spectra using He & resonance radiation and Qe(111) surfaces
have been measured for both bonding and nonbonding orbitals. In all cases the partial
photocurrent from a specific orbital is considerably enhanced for the macroscopic elec-
tric field normal to the surface independent of the orbital symmetry. This is interpreted
in terms of an anomalous enhancement of the dielectric response due to surface polariza-
tion charge within the short electron escape depth (A, ~ 10 A) at these energies.

The role of the surface in photoemission from
a solid (i.e. , the surface photoelectric effect) is
an old topic which has been studied both experi-
mentally' and theoretically' for more than four
decades. Most experiments have concerned only
the total yield which displays a strong vectorial
photoeffect at low photon energy Sco near thresh-
old. Recent work has tended to concentrate on
free-electron metals'4 but even for these materi-
als the detailed mechanism of optical excitation
is far from being completely understood' since

both surface-plasmon effects and direct excita-
tion are possible for h~ h~„ the surface-plas-
mon energy. In contrast, high-energy photoemis-
sion (R~ &k~~) is expected to exhibit a negligible
surface photoeffect with optical selection rules
determined by the symmetry properties of the
photoelectron wave functions. ' ' This paper re-
ports the first systematic measurement of high-
energy photoelectron energy spectra (h&u & Rcu~)

as a function of angle of incidence for both bond-
ing and nonbonding orbitals. The bonding orbitals


