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A nonlinear model of the collisional trapped-ion mode is presented, in which the ener-
gy in long-wavelength instabilities is transferred to short-wavelength modes which are
then damped by ion-bounce resonances. Near marginal stability, the saturation of a sin-
gle unstable Fourier mode is computed. Far from marginal stability, steady-state non-
linear solitary waves containing many Fourier modes are found. Particle transport is
estimated in both cases.

It is well known' ' that plasma confinement in
toroidal devices may be seriously impaired by
the development of instabilities associated with
the trapped particles, namely that class of par-
ticles which oscillate in magnetic wells created
by the inherent magnetic field inhomogeneity. In
the next generation of tokamaks, the ion temper-
ature should be sufficiently large for the ions to
enter the banana regime. In this parameter
range (where the effective ion collision frequency
p,
' is less than the trapped-ion bounce frequency

~„*)the dissipative trapped-ion mode, a drift
wave driven unstable by electron collisions, is
theoretically predicted to appear.

Several authors' ' have studied the linear de-
velopment of this instability which appears in the
limit where the mode frequency 40p is Qluch less
than both the trapped-ion bounce frequency and
the effective electron collision frequency (v
= v, ' '= v, /e, where c =r/Ii is the inverse aspect
ratio). In this limit, the linear dispersion re
lation is

2/
&u = cu +i (u /v —v - y„D),

where &u, = e'l'&o /2, co being the electron dia-
magnetic drift frequency, v, = v,

" = v, /e is the
effective ion collision frequency, and y~, which
represents the effect of Landau damping by ion-

bounce resonances, ' ' is given by

YLD + (1 2 1$)+0/(+yj )

where A' is a constant of order unity and g,
=d 1nT, /d Inn is required to be less than —', to en-
sure Landau damping rather than growth. ' 4

In this Letter, we study the nonlinear evolution
of this mode in order to determine the saturation
level of the fluctuating electric fields. Knowing
the saturation level we then compute the particle
transport caused by this instability. The analy-
sis is performed using a slab model, first pro-
posed by Kadomtsev and Pogutse, ' which includes
the nonlinear motion E&&B of the trapped parti-
cles. Other nonlinear effects, such as particle
detrapping by the electrostatic potential, ' are
not included in this treatment. The basic mech-
anism for the saturation of the mode is the ef-
fective transfer of energy from long-wavelength
to short-wavelength modes which are then damped
by ion-bounce resonances for sufficiently weak
temperature gradients (q, & —', ).

The basic model consists of the two-dimension-
al continuity equations describing the field-line-
averaged EXB convection of the trapped parti-
cles,

sn, , r/I &t + c(0 && Vcp/B) ~ Vn, ,
r

= —v, [n, ,
r —&' 'n, exp(+ e y/T)],
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and the quasineutrality condition

n, r+ (1 —~'~')n, exp(ey/T)

= n, + (1 —e' )n, exp(- ey/T). (4)

84 84 V~ ~ C V~ ~4
et + By p By

where V = —(e't2/2)(cT/eB)(& Inn/&x) is the
trapped-electron diamagnetic drift velocity. In
deriving Eq. (5), we have assumed that (i) ey/T
«1 so that exp(ey/T) = 1+ey/T, and that (ii) the
gradient in number density is constant so that
terms involving &'n/&x' can be dropped. We al-
so find that the contribution of the x derivatives
of y to Eq. (5) are smaller by &u,/v =k„V„/v
than the contributions from the y derivatives.
This latter fact enables us to reduce the basic
equations to the one-dimensional form.

To lowest order Eq. (5) reduces to 84/et
+ V„&4/By =0, which describes the undamped
propagation of drift waves iri the direction of the
electron diamagnetic drift. In the next order,
moving to the drift frame g =y —V t and neglect-
ing ion collisions, one finds an equation of the
form of the reversed Burgers equation. The
solutions to this equation exhibit gradients that
become increasingly strong (tending toward dis-
continuity) a,s t- ~. Thus, Eq. (5) demonstrates
the transfer of wave energy from long to short
wavelengths but it does not contain a mechanism
for saturation. As noted earlier, the linear ki-

The right-hand side of Eq. (3) describes the col-
lisional relaxation of the '.rapped-particle number
densities to the values that they would assume if
the electrostatic potential y were time indepen-
dent. Here, no is the equilibrium total number
density, e is the inverse aspect ratio, and hence
&' ' is equal to the fraction of trapped particles.
The effective collision frequencies v, = v, ,/e
are enhanced, thus accounting for the relatively
small-angle scattering that is required to trap
or detrap a particle. " The unit vector e is di-
rected along the magnetic field. These equations
are analyzed in the slab limit with the usual co-
ordinates r arid r(0 —&/q) (f and 0 being the to-
roidal and poloidal angles and q the safety fac-
tor) replaced by x and y.

In the limit v» d/dt-e, » v, appropriate to
the dissipative trapped-ion mode, we combine
Eqs. (3) and (4) to obtain the following nonlinear
partial differential equation for the fluctuating
potential 4 =eq/T:

netic theory of this mode indicates that for suf-
ficiently weak temperature gradients, the un-
stable spectrum is limited at short wavelengths
by Landau damping from the ion-bounce reso-
nances. ' ' To incorporate this important veloc-
ity-space dissipative effect into our fluid model,
we add to Eq. (5) the damping term given in Eq.
(2), rewritten as A'(1 —1.5q, )V (V /~„r)'8'4/
Bq'. When linearized, Eq. (5) now correctly re-
produces the dispersion relation given by Eq. (1).
The Landau damping by ion-bounce resonances
is the mechanism through which the plasma ab-
sorbs the energy transferred from long to short
wavelengths by the nonlinearity, and thus quench-
es the instability after a finite time of growth.
Introducing the dimensionless variables 7 = (~,'/
v )t, ( =g/x, and P= (v /~' 'co,)4, where v, = V„/
y, the equation describing the growth and satura-
tion of the fluctuating potential becomes

(6)

where n =A'(1 —1.5q f)(&u,/&u„r)'v /~„r is a mea-
sure of the relative strength of Landau damping
compared to the electron collisional growth, and
v= v v+/~0'. Solutions to Eq. (6) are required to
satisfy periodic boundary conditions (($)=g($
+2m) in accordance with toroidal periodicity,
over a length 2'.

In this Letter, approximate solutions are ob-
tained for conditions near marginal stability, and
for unstable situations in which many modes are
excited. The distinction between the two cases
is determined by the magnitude of the Landau
damping factor ~.

The. Fourier representation

g($, v) =g („(7)sinn&

satisfies the periodic boundary conditions and
has the odd parity, P(g) = —P(- $), demanded by
Eq. (6). Substituting this into Eq. (6) gives

W. /» ~.4.= .nZ. (4.-.4. —4.4...),
where y„=n'- nn4- v is the linear growth rate
of the nth Fourier mode. For negligible ion col-
lisional damping (v —0), we note that if 0.25& n
& 1 then only the n = 1 mode is unstable, while if
n «1 then all modes with n& e ' will be un-
stable. Near marginal stability where there is
only a single unstable mode with a small growth
rate, Eq. (8) can be solved by a mode-coupling
calculation. Letting n=P be the single unstable
mode, it is seen that the mode grows till the
quadratic nonlinearity effectively couples it to
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the nonlinearly generated damped mode n=2P.
The equations describing coupling between the
two modes are

proached asymptotically for 7» y
With v=0, the equation to be solved is

Bqp/BT y—p Pp Pyp q» 2 y, & 0,

84 p/»-y p4 p=P4p', y p~0 (10)

8)~ 8)4 8$

where
which can be solved to obtain expressions for
Pp(v) and g»(v) W. e note that for T»yp ', (p
-(yp~y»~)' '/P and 0 p- yp/P

The case 0 & n «1, far from marginal stability,
can be studied by using a multiple scale-length
expansion to obtain a steady-state solution to Eq.
(6). In a time comparable to the fastest growing
linear mode the instability will saturate, thus
solutions to the steady-state equation will be ap-

4(h+») =4(4)=- 0(- ().

If the nonlinear term in Eq. (11)were missing,
then the periodic solutions of the linear equation
would have a spatial dependence like sin//a'~'.
Since o.«1, this space scale variation is much
faster than $. Guided by this, we introduce two
space scales and look for solutions which may be
expanded in the form

(=A($)+ C, ($) sin[)/a' '+ a' 'J p, (g)d$]+ a'~'C, ($) sin[2$/a'~'+ a'~'J p, (])d]]+ (12)

where the quantities A($)2 C, ($)2 etc. , are also to be expanded in power series in a' '. We substitute
Eq. (12) into Eq. (11) and keep terms of order a ' ' and terms of order unity. After some straightfor-
ward algebra, we find

BC,/8( —AC, =0, 8'A/8$ +[8(A'+ —,'C, )/8$] =0,

2C, )L). , = 3 O'C, /8$' - C,3/12, C, = —C,'/12.

Equations (13) are solved simultaneously to obtain

C, =C. nd(yg, k),

A. =yk sn(y 82 k) cn(y)2 k) nd(y $2 k ),

(13)

(15)

(16)

with A. =C /2k' and k" =1—k', where X and k are unknown constants. The Jacobi elliptic functions
nd(u, k), sn(u, k), and cn(u, k) are periodic functions of u with a periodicity 2K(k) for both nd and the
product of sn with cn, K(k) being the complete elliptic integral of the first kind.

From the periodic boundary conditions, P($+27)) = P($), it follows that A((+2m) =A($) and C, ($+2w)
=C,($). The periodicity of A and C, is assured by the choice 2m'. =2K(k), whence wc =2k'K(k). The
periodicity on the slow scale of the sine function in Eq. (12) demands that

l 1 K(k)„,——=, , [3(2-k )K(k)-yB(k)]-=F(k),

where l is the integer nearest to I/a'~', and E(k) is the complete elliptic integral of the second kind.
The function F(k) varies between ——,', for k =0 and ~ for k =1. The solution is then

2=—nd, d 2*nd —,2 nn), 2 +2(2 —2 )' *din, i, )
K K$ 2 K$ t K$
r 7r' 7t

'
7l

valid in the limit n«1. The form of P for k =1 is shown in Fig. 1. For moderate values of k, K(k)
--,v, hence p--', and ey/T-e' '~,/v . The detrapping potential is ey/T-, B,„—B,„)/B,„-e; thus,
for ur, /v & e' ', we expect detrapping to be less important than the mechanism reported here

With the fluctuating electrostatic potentials driven by the instability calculated in the two limits e-1
and a«1, we can compute the particle transport by use of the expression

(»)
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for the diffusion coefficients.

for Cl 1~ (20)

FIG. 1. Typical potential wave form computed using

E~. (18) with a. =0.01 and k = 1. Note that g = (v /
e no}(evp/T) .

are then I andau damped by ion-bounce reso-
nances. The saturated potentials have been com-
puted and used to calculate the diffusion that re-
sults from the instability. The diffusion coeffi-
cient is a strongly increasing function of temper-
ature. However, for high temperatures the ratio
of the mode frequency to the effective electron
collision frequency, ~,/v, which is an expansion
parameter in both the usual linear theory and our
nonlinear analysis, becomes of the order unity
or more. Hence, in this regime our analysis
ceases to be valid. Parameters of next-genera-
tion tokamaks typically fall into the regime ur, /
v «1, and so it is of interest to compare the
relative magnitudes of the diffusion coefficient
given in Eq (21.) to one suggested by Kadomtsev
and Pogutse, ' namely D Kp

- (r/R)'~'(cT, /eB)'/
4p, y„'. For parameters characteristic of the
Pi T tokomak (n - 5 x10 "/ cm', R = 130 cm, r„
=45 cm, B=50 kG, q=2. 5), we find that the ratio
of our diffusion coefficient to that given by Ka-
domtsev and Pogutse is D/DKP = 3 x10 'T' where
T is in keV, while the basic perturbation param-
eter of the linear theory ~,/v =1.0x10 'T'/'.
Thus, for temperatures less than approximately
2 keV we find that diffusion caused by the trapped-
ion mode in the PLT tokomak will be less than
that predicted by Kadomtsev and Pogutse.

for o.«1, (21)

where f(k) =2E(k)K(k)/n'; over a broad range of
k within 0& k & 1, we have f(k) -0.5-1.0.

In this paper we have analyzed the nonlinear
evolution of the dissipative trapped-ion mode for
conditions near marginal stability (o. -1) and for
situations where many linearly unstable modes
are present (o.«1). In each case the convective
nonlinearity transfers energy from long-wave-
length modes to short-wavelength modes which
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