from the experimental line scans and the uncertainty in its magnitude led to the uncertainties in ΔE_{P} shown in Table I.

The contribution to the uncertainty of the rf power calibration was estimated to be $\pm 0.02 \mathrm{MHz}$. Other possible sources of error which were found to be negligible ($<0.01 \mathrm{MHz}$) were Doppler shift, time dilation, rf Stark shifts, stray electric fields, and residual magnetic fields.

Table I summarizes the results of each run. The weighted average result $\Delta E_{P}=59.22(14) \mathrm{MHz}$ is in good agreement with the theoretical prediction of 59.1501(1) MHz. ${ }^{9}$ The experimental precision indicates that techniques of subnaturallinewidth spectroscopy can be successfully used for the measurement of unresolved features of atomic structure.
*Research supported in part by the National Science

Foundation, Grant No. GP-22787.
\dagger National Research Council (Canada) post graduate scholar.
${ }^{1}$ C. W. Fabjan and F. M. Pipkin, Phys. Rev. A 6, 556 (1972).
${ }^{2}$ G. Copley, B. P. Kibble, and G. W. Series, J. Phys. B: Proc. Phys. Soc., London 1, 724 (1968).
${ }^{3}$ I.-J. Ma, J. Mertens, G. zu Putlitz, and G. Schütte, Z. Phys. 208, 352 (1968).
${ }^{4}$ P. Schenk, R. C. Hilborn, and H. Metcalf, Phys. Rev. Lett. 31, 189 (1973).
${ }^{5}$ S. R. Lundeen, Y. L. Yung, and F. M. Pipkin, Nucl. Instrum. Methods 110, 355 (1973).
${ }^{6}$ The functional form of $I(\nu)$ is not generally valid, but is adequate for the range of rf geometries encountered in this experiment.
${ }^{7}$ Slight improvement of the fits made far off resonance was obtained by adding a small cubic term to the argument of the cosine, i.e., $\cos \left[\left(\nu-\nu_{0}\right) T_{1}+\left(\nu-\nu_{0}\right)^{3} T_{3}{ }^{3}\right]$.
${ }^{8}$ S. R. Lundeen, thesis, Harvard University (unpublished).
${ }^{9}$ S. J. Brodsky and R. G. Parsons, Phys. Rev. 163, 134 (1967).

Electron Density at the Nucleus and the Lamb Shift of ${ }^{3} P$ Levels of Two-Electron Ions*

A. M. Ermolaev
Department of Applied Mathematics and Theoretical Physics, The Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland (Received 2 December 1974)

Abstract

The Lamb shifts of the $2{ }^{3}$ S and $2{ }^{3} P_{1}$ levels in HeI and LiII have been calculated by a method of effective-oscillator-strength sums. The computed shifts are in a good agreement with experiment. For LiI, the theoretical Lamb shift of the $2^{3} P_{1}$ level is +0.291 $\pm 0.041 \mathrm{~cm}^{-1}$ to be compared with the experimental value of $+0.230 \pm 0.060 \mathrm{~cm}^{-1}$ derived from the $2{ }^{3} S-2{ }^{3} P_{1}$ interval measured by Bacis and Berry. A significant Lamb shift of ${ }^{3} P$ levels is attributed to an anomalously low electron density at the nucleus in these states.

Recently the author gave ${ }^{1}$ a theoretical discussion of the Lamb shift in excited states of twoelectron ions. Numerical calculations performed for the ions of nuclear charge $Z \geqslant 4$ predicted a significant Lamb shift of ${ }^{3} P$ atomic levels. Independently, Berry and Bacis ${ }^{2}$ reported hfs measurements which could suggest a similar effect in the singly ionized lithium atom. Since that time, high-resolution studies of the $2^{3} S-2^{3} P$ transition have been accomplished ${ }^{3}$ for ${ }^{6,7} \mathrm{Li}$ II. The experiment shows a difference,

$$
\begin{equation*}
D_{\mathrm{L}}{ }^{\text {expt }}=-1.2547 \pm 0.0040 \mathrm{~cm}^{-1} \tag{1}
\end{equation*}
$$

between the observed value of the $2{ }^{3} S-2^{3} P_{1}$ interval in ${ }^{7} \mathrm{Li}$ II and that calculated by Accad, Pekeris, and Schiff ${ }^{4}$ to order α^{2} and corrected with re-
spect to the singlet-triplet mixing of the P states ${ }^{5}$ as well as with respect to hf interactions. ${ }^{3}$ Berry and Bacis estimate the Lamb shift of the $2^{3} S$ level to be $-0.99 \pm 0.04 \mathrm{~cm}^{-1}$. This leaves the difference

$$
\begin{equation*}
D_{\mathrm{L}}^{\prime}=+0.2647 \pm 0.04 \mathrm{~cm}^{-1} \tag{2}
\end{equation*}
$$

to be accounted for.
The difference $D_{\mathrm{L}}{ }^{\prime}$ is appreciably bigger than an expected Lamb shift of $\pm 0.007 \mathrm{~cm}^{-1}$ for a $2 p$ electron in the hydrogenic ion of $Z=2$. Therefore the suggestion that this difference can still be attributed to the Lamb shift of the $2{ }^{3} P_{1}$ level needs an independent justification. Berry and Bacis pointed out ${ }^{2}$ that an underestimation of the S shift and a slow convergence of the method of

Accad, Pekeris, and Schiff ${ }^{4}$ for nonrelativistic S states could be other possible explanations of the significant difference $D_{\mathrm{L}}{ }^{\prime}$.

In this communication we shall discuss the effect and we shall find that $D_{\mathrm{L}}{ }^{\prime}$ is, in fact, in good agreement with the theoretical value of the $2{ }^{3} P_{1}$ Lamb shift obtained here.

Electron density term. - Following the notations used by the author earlier, ${ }^{1}$ we shall write the Lamb shift E_{I} of the relativistic potential of ionization of a two-electron ion in a $|n L S J\rangle$ state as

$$
\begin{equation*}
E_{I, \alpha^{3}}=\delta E(n L S)-E_{L, 2} \prime \prime(n L S)-E_{L, 2}{ }^{\prime \prime \prime}(n L S J), \tag{3}
\end{equation*}
$$

where all corrections of orders $Z^{4} \alpha^{3}, Z^{3} \alpha^{3}$, and $Z^{3} \alpha^{3} \ln \alpha$ have been included in (3) (energies are in rydbergs). The main contribution to the shift E_{I} comes from $\delta E=\delta E_{1}+\delta E_{2}$:

$$
\begin{equation*}
\delta E_{1}=-\left(8 \alpha^{3} Z^{4} / 3 \pi\right)\left[2 \ln (1 / \alpha)+\frac{19}{30}\right] \Delta(Z) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta E_{2}=-\left(\alpha^{3} / 2 \pi\right)[P(Q)-P(q)], \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
P(Q)=\sum_{Q^{\prime}} F_{Q^{\prime} Q}\left(E_{Q^{\prime}}-E_{Q}\right)^{2} \ln \left|\left(E_{Q^{\prime}}-E_{Q}\right)\right| \tag{6}
\end{equation*}
$$

is related to the hydrogenic ion with nuclear charge $Z, F_{Q^{\prime} Q}$ being oscillator strengths for electric dipole transitions from the initial state $|Q\rangle=|1 s\rangle$ to all other states $\left|Q^{\prime}\right\rangle$ of the ion. The second term in (5) has an analogous meaning for the two-electron ion of the same $Z,|q\rangle$ being the initial state $|n L S\rangle$.

The electron density at the nucleus in the initial state $|q\rangle$ of the two-electron ion is determined by $\langle q| \delta^{(3)}\left(\vec{r}_{1}\right)|q\rangle$. This quantity enters the term δE_{1}, formula (4), since the correlation function $\Delta(Z)$ is given by

$$
\begin{equation*}
\Delta(Z)=2 \pi\langle q| \delta^{(3)}\left(\overrightarrow{\mathrm{r}}_{1}\right)|q\rangle / Z^{3}-1 \tag{7}
\end{equation*}
$$

The functions $\Delta(Z)$ computed from the data of Ref. 4 for $n^{1,3} S$ and $n^{1,3} P$ states, $n \leqslant 5$, of the ions with $Z \leqslant 10$ are presented in Fig. 1, scaled by a factor of n^{3}. It can be asserted that, for low Z, these functions differ considerably from the asymptotic values $\Delta(\infty)$ for all but $n^{1} P$ states.

In the case of $n^{1,3} S$ and $n^{1} P$ states, $\Delta(Z)>0$, which corresponds to a regular situation when the electron density at the nucleus in a $|q\rangle$ state of the two-electron ion is higher than that in the $|1 s\rangle$ state of the hydrogenic ion. For a positive $\Delta(Z)$, the term δE_{1}, formula (4), is negative and the resulting shift decreases the potential of ionization. For S states, the departure of $\Delta(Z)$ from

FIG. 1. The correlation functions $n^{3} \Delta(Z)$ for $n^{1,3} S$ and $n^{1,3} P$ states of two-electron ions.
$\Delta(\infty)$ tends to diminish this effect.
The ${ }^{3} P$ states are a rather special case: $\Delta(Z)$ <0; that is, the electron density at the nucleus is lower in these states than that in the $|1 s\rangle$ state of the hydrogenic ion. The function $\Delta(Z)$ attains a minimum at $Z \approx 3.5$ where its magnitude is about 25% of that for S states, instead of approaching the asymptotic value $\Delta(\infty)=0$. This leads to a significant shift δE_{1} which increases the potential of ionization. We can expect that the behavior of functions $\Delta(Z)$ of $L>1$ states will be similar to that of the P states.
For both S and P states of low Z, the electrondensity term δE_{1} gives the main contribution to the total Lamb shift E_{I}. The term δE_{2}, depending upon the oscillator-strength sums, constitutes about 30% of δE_{1}.
Effective-oscillator-strength sums.-For calculation of two-electron oscillator sums (6) we shall use the following method. Let us assume that the initial state $|q\rangle$ is given by

$$
\begin{equation*}
|q\rangle=2^{-1 / 2} Q(1,2) u_{1 s}\left(1, Z_{i}\right) u_{n L}\left(2, Z_{a}\right) \tag{8}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left|q^{\prime}\right\rangle=2^{-1 / 2} Q(1,2) \hat{C}(\beta, \gamma \mid q) u_{\beta}\left(1, Z_{i}\right) u_{\gamma}\left(2, Z_{a}\right), \tag{9}
\end{equation*}
$$

where $u_{\beta}\left(1, Z_{i}\right)$ is the hydrogenic function of electron 1 in a $|\beta\rangle$ state for the Coulomb field of charge Z_{i}, and \hat{C} is a coupling operator for transitions from $|q\rangle$ to $\left|q^{\prime}\right\rangle$. The term δE_{2} given by (5) and (6) then becomes, for a fixed value of Z, a two-parameter function of Z_{i} and Z_{a}.

$$
\begin{align*}
\delta E_{2}\left(Z_{i}, Z_{a}\right)=- & \left(8 \alpha^{3} Z^{4} / 3 \pi\right) \\
& \times\left\{\ln \left[K_{0}(1 s) Z^{2}\right]-\left(Z_{i} / Z\right)^{4} \ln \left[K_{0}(1 s) Z_{i}^{2}\right]-\left(1 / n^{3}\right)\left(Z_{a} / Z\right)^{4} \ln \left[K_{0}(n L) Z_{a}^{2}\right]_{ \pm A_{L}}\left(Z_{i}, Z_{a}\right)\right\}, \tag{10}
\end{align*}
$$

$K_{0}(n l)$ being the Bethe average excitation energy of an electron in an $|n l\rangle$ state with $Z=1$.
The last term in (10), that is $A_{L}\left(Z_{i}, Z_{a}\right)$, accounts for electron exchange. This term vanishes when $Z_{i}=Z_{a}$.
We specify the numerical values of Z_{i} and Z_{a} by the condition

$$
\begin{equation*}
S_{k}\left(Z_{i}, Z_{a}\right)=S_{k}(Z), \quad k=1,2 . \tag{11}
\end{equation*}
$$

In this equation, $S_{k}(Z)$ is the oscillator-strength sum $\sum_{q} f_{q^{\prime}}\left(\mathcal{E}_{q^{\prime}}-\mathcal{E}_{q}\right)^{k}$ for the $|q\rangle$ state of the twoelectron ion. With $|q\rangle$ being the exact wave function of the state, the sums $S_{k}(Z), k=1,2$, are equivalent to the expectation values given by Eqs. (12) and (13) below, provided energies $\mathcal{E}_{\boldsymbol{q}^{\prime}}$ are expressed in rydbergs:

$$
\begin{align*}
& S_{1}(Z)=\frac{4}{3}\langle q|\left(\overrightarrow{\mathrm{p}}_{1}+\overrightarrow{\mathrm{p}}_{2}\right)^{2}|q\rangle, \tag{12}\\
& S_{2}(Z)=(16 \pi Z / 3)\langle q| \delta^{(3)}\left(\overrightarrow{\mathrm{r}}_{1}\right)+\delta^{(3)}\left(\overrightarrow{\mathrm{r}}_{2}\right)|q\rangle . \tag{13}
\end{align*}
$$

The left-hand side of Eq. (11) denotes the expectation values (12) and (13), obtained with wave functions (8) and (9). The values of parameters Z_{i} and Z_{a} obtained from (11) are then used to compute the effective sum (10) which gives the contribution to the Lamb shift.
Lamb shifts in He and Li^{+}. -I have computed Lamb shifts for $n=2,{ }^{3} S$ and ${ }^{3} P$ states of $\mathrm{He} I$ and Li II. The numerical values of $S_{k}(Z)$, required for calculation of Z_{i} and Z_{a}, have been obtained from the expectation values of Ref. 4.

TABLE I. The S states of HeI. Comparison of different computational methods for the shift $\delta E=\delta E_{1}$ $+\delta E_{2}\left(\mathrm{in} \mathrm{cm}^{-1}\right)$ 。

Present method				
with				
$A\left(Z_{i,}, Z_{\mathrm{a}}\right)=0$			\quad	Direct summation
:---:				
over $\left\|q^{\prime}\right\rangle$				

${ }^{a}$ Ref. 7 。
${ }^{\mathrm{b}}$ Ref. 8.

For neutral helium, the present method can be compared with previous calculations ${ }^{7,8}$ of Lamb shifts in S states. Table I gives values of δE for $1^{1} S$ and $2^{1.3} S$ states of He , which have been obtained by the present method with the exchange terms $A\left(Z_{i}, Z_{a}\right)$ being neglected in (10), (12), and (13). Comparison with calculations by Salpeter and Zaidi ${ }^{7}$ and by Suh and Zaidi ${ }^{8}$ shows that for low-lying S states the present method without exchange terms leads to δE which coincide, within the stated probable error, with the values of δE obtained by direct summation of the oscillatorstrength terms.
In view of this, I have also neglected the exchange terms $A\left(Z_{i}, Z_{a}\right)$ in my calculations of Lamb shifts for ${ }^{3} P$ states. ${ }^{9}$

The computed Lamb shifts to order α^{3} are presented in Table II. The total shift E_{I} also includes

TABLE II. The Lamb shifts in triplet states of He I and Li II, $E_{I}=\delta E_{1}+\delta E_{2}-E_{L, 2^{\prime \prime}}-E_{L_{9} 2^{\prime \prime \prime}}-E_{L, 2}{ }^{m \prime \prime}$. All shifts are given in inverse centimeters.

Term	He I		Li II	
	$2^{3} \mathrm{~S}$ $z_{i}=2.012$ $z_{i}=1.126$	$\begin{gathered} 2^{3} P_{1} \\ Z_{i}=1.994 \\ Z_{a}=0.972 \end{gathered}$	$\begin{gathered} 2^{3} \mathrm{~S} \\ z_{i}=3.023 \\ Z_{a}=2.114 \end{gathered}$	$\begin{gathered} 2^{3} P_{1} \\ Z_{i}=2.989 \\ Z_{a}=1.954 \end{gathered}$
δE_{1}	-0.224	0.070	-1.905	0.444
$S_{E 2}$	0.091	-0.032	0.910	-0.155
$-\mathrm{E}_{\mathrm{L}, 2}-\mathrm{E}_{\mathrm{L}, 2}$	0.000	-0.001	0.000	-0.006
$-E_{L, 2}$	-0.002	0.001	-0.030	0.008
E_{I}	-0.135	+0.038	-1.025	+0.291
$E_{I}(S-P)$	-0.173		-1.316	
Experiment	$-0.175 \pm 0.01^{\text {a }}$		$-1.255 \pm 0.004^{\text {b }}$	

${ }^{\mathrm{a}}$ Ref. 10 .
${ }^{\mathrm{b}}$ Ref. 3 .
the leading term

$$
\begin{equation*}
-E_{L, 2}^{\prime \prime \prime \prime}=-8 \alpha^{4} Z^{5}\left(1+\frac{11}{128}-\ln 2 / 2+\frac{5}{192}\right) \Delta(Z) \tag{14}
\end{equation*}
$$

of order α^{4} which is a generalization of the term ${ }^{10}$ for relativistic corrections to the Lamb shift in the one-electron ion to the case of a two-electron ion.
Comparison with experimental results for the $2^{3} S-2^{3} P_{1}$ transition in $\mathrm{He} \mathrm{I}^{11}$ and in $\mathrm{Li} \mathrm{II}^{3}$ shows that inclusion of the Lamb shift of the P level is essential to bring the experimental and theoretical total shifts $E_{I}(S-P)$ in agreement with each other. The J-dependent term $-E_{L, 2}{ }^{\prime \prime \prime}$ contributes only 2% to the shift $E_{I}\left({ }^{3} P_{1}\right)$ so that the latter is determined, for low Z, mainly by correlation effects in δE_{1}.
For Li II the value $E_{I, \alpha^{3}}\left(2^{3} S\right)=-0.995 \mathrm{~cm}^{-1}$ confirms the estimate ${ }^{2}$ by Berry and Bacis. The main uncertainty in the shift $E_{I}\left(2^{3} S\right)$ is due to an error η_{1} in δE_{2}. We shall adopt $\eta_{1}\left(2^{3} S\right)= \pm-0.040$ cm^{-1} stated in Ref. 2. The uncertainty $\eta_{2}\left(2^{3} S\right)$, due to terms of orders α^{4} and $\alpha^{3}(m / M)$ neglected in (14), is probably $\pm 0.015 \mathrm{~cm}^{-1}$. The volumeisotope correction contributes about $0.0008 \mathrm{~cm}^{-1}$.

For the $2{ }^{3} P_{1}$ state of Li II, no other calculations of the oscillator-strength sums δE_{2} are available. We shall obtain a crude estimate of the error η_{1} by assuming that the calculation of δE_{2} doubles the uncertainty brought in the term δE_{2} of $2^{1,3} S$ He by the method of Suh and Zaidi. ${ }^{8}$ This gives $\eta_{1}\left({ }^{3} P_{1}\right)= \pm 0.037 \mathrm{~cm}^{-1}$. The probable error $\eta_{2}\left(2^{3} P_{1}\right)$ is $\pm 0.004 \mathrm{~cm}^{-1}$, and the volumeisotope correction may definitely be neglected.

Within these estimates of uncertainties in the theoretical shifts, one obtains for ${ }^{7} \mathrm{Li}$ II

$$
\begin{equation*}
E_{I}\left(2^{3} S\right)=-1.025 \pm 0.055 \mathrm{~cm}^{-1} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{I}\left(2^{3} P_{1}\right)=+0.291 \pm 0.041 \mathrm{~cm}^{-1} \tag{16}
\end{equation*}
$$

The experimental value of the Lamb shift of the $2{ }^{3} P_{1}$ level is then found thus:

$$
\begin{align*}
E_{I}^{\operatorname{expt}}\left(2^{3} P_{1}\right) & =E_{I}\left(2^{3} S\right)-D_{\mathrm{L}} \operatorname{expt} \\
& =+0.230 \pm 0.059+\eta_{3} \mathrm{~cm}^{-1}, \tag{17}
\end{align*}
$$

where $D_{\mathrm{L}}{ }^{\text {expt }}$ is given by (1) and η_{3} accounts for the uncertainty in the nonrelativistic position of the two levels, mainly of the $2{ }^{3} S$ level. Despite slow convergence of the Pekeris method for low-lying S states, ${ }^{12}$ it appears that the Pekeris estimate
$\eta_{3}= \pm 0.001 \mathrm{~cm}^{-1}$ for $2{ }^{3} \mathrm{~S} \mathrm{Li}$ II is reliable. This brings us to

$$
\begin{equation*}
E_{I}{ }^{\operatorname{expt}}\left(2^{3} P_{1}\right)=+0.230 \mathrm{~cm} \pm 0.060 \mathrm{~cm}^{-1} \tag{18}
\end{equation*}
$$

which is in good agreement with the theoretical value (16). I shall emphasize that the main error in the present experimental value (18) is due to the uncertainty in the theoretical value of the Lamb shift of the $2^{3} S$ level.

For ${ }^{1} P$ states, the terms δE_{1} and δE_{2} are of comparable magnitude and opposite signs so that they nearly cancel each other. This results in a small total shift of the ${ }^{1} P$ level. Recent experiments ${ }^{13}$ for two-electron ions of low Z support this conclusion.

[^0]
[^0]: *Research supported by the U.S. Office of Naval Research under Contract No. N00014-69-C-0035.
 ${ }^{1}$ A. M. Ermolaev, Phys. Rev. A 8, 1651 (1973).
 ${ }^{2}$ H. G. Berry and R. Bacis, Phys. Rev. A 8, 36 (1973).
 ${ }^{3}$ R. Bacis and H. G. Berry, Phys. Rev. A 10, 466 (1974).
 ${ }^{4}$ Y. Accad, C. L. Pekeris, and B. Schiff, Phys. Rev. A 4, 516 (1971).
 ${ }^{5}$ A. M. Ermolaev and M. Jones, J. Phys. B: Proc. Phys. Soc., London 5, L225 (1972) ; B. Schiff, Y. Accad, and C. L. Pekeris, Phys. Rev. A 8, 2272 (1973).
 ${ }^{6}$ Numerical values of the Lamb shifts reported in Ref. 1 for the ions of $Z \geqslant 4$ correspond with $Z_{i}=Z, Z_{a}=Z-1$, and $A\left(Z_{i}, Z_{a}\right)=0$. For $Z<4$, this choice of the effective nuclear charges Z_{i} and Z_{a} brings in an error of 30% to the computed shifts δE.
 ${ }^{7}$ E. E. Salpeter and M. H. Zaidi, Phys. Rev. 112, 248 (1962). Calculations by A. Dalgarno and A. L. Stewart, Proc. Phys. Soc., London 76, 49 (1960), give $\delta E=1.492$ $\pm 0.025 \mathrm{~cm}^{-1}$.
 ${ }^{8}$ K. S. Suh and M. M. Zaidi, Proc. Roy. Soc., Ser. A 296, 94 (1965).
 ${ }^{9}$ For $2^{1,3} P$ states, the neglect of the exchange terms $A\left(Z_{i}, Z_{a}\right)$ may lead to an error in δE_{2} which is bigger than that for $2^{1,3} S$ states. For instance, transitions $1 s 2 p{ }^{1,3} P \rightarrow 2 s \epsilon s^{1,3} S$ are not quite adequately represented in (10) unless the exchange terms are taken into account.
 ${ }^{10}$ R. Karplus, A. Klein, and J. Schwinger, Phys. Rev. 86, 288 (1952).
 ${ }^{11}$ W. C. Martin, J. Res. Nat. Bur. Stand., Sect. A $\underline{64}$, 19 (1960).
 ${ }^{12}$ A. M. Ermolaev, J. Phys. B: Proc. Phys. Soc., London $\underline{7}, 1611$ (1974).
 ${ }^{13}$ B. Löfstrand, Phys. Scr. 8, 51 (1973) Be II; M. Eidelsberg, ibid. 7, 1476 (1974) for BIV; B. Edlen

