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The expectation value of electrical charge in charged vacuum is calculated utilizing the
Thomas-Fermi model. We find almost complete screening of the nuclear charge. For
any given nuclear density there is an upper bound for the electrical potential. For nor-
mal nuclear densities this value is —250 MeV. This suggests that the vacuum is stable
against spontaneous formation of heavy, charged particles.
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where V=eAO is the electrostatic potential. The

The behavior of electrons in strong electromag-
netic fields gives rise to phenomena outside the
range of the usual perturbation-theory treatment
of quantum electrodynamics (QED). One is forced
to give up the usual concept of a neutral ground
state (the vacuum) of QED as the strength of the
potential passes through the critical point (Z„
= 172 for ordinary nuclei). It was shown by Ra-
felski, Muller, and Greiner' and, independently,
by Fulcher and Klein, ' that the supercritical vac-
uum is charged.

In this note we explore the consequences of the
idea of a changing vacuum' when applied to the
description of extended bulk nuclear matter, e.g. ,
charged domains in neutron stars or abnormal
nuclear states.

It has been shown' that the proper value of the
Fermi energy is EF = —nz, even for supercritical
fields. Even if no bound states between E = —nz

and E =+ m are occupied by real electrons, the
ground state thus defined has charge —2e (172
& Z & 185), —e (185 ~ Z ~ 215), etc. From this it
is obvious that with increasing Z the vacuum be-
comes more and more charged. Ultimately it
can be expected that the situation is adequately
described by a relativistic extension of the Thom-
as-Fermi statistical model.

The density of electrons is as usual related to
the Fermi momentum k„by

ep = —e'/3m'h, ',
where e is the electron's charge. The relativistic
relation between the Fermi energy EF and Fermi
momentum is

step function 8 guarantees that kF is a positive
quantity (we have used EF —V&0).

From Eq. (1) we now obtains

«lp( )l0&=-(./»')[(E, —v)'- ']'"
x 8(E - V- m).

Introducing the total charge density p~ which is
composed of the external "nuclear" charge p„
and the electron charge,

Pz =Pp+Pp (4)

and using the Coulomb law

a V(r) = epr(r),

we fend

(5)

b, V(r) = cps(r) —(e2/3w2)[(E F
—V)2 —m2]s~'

x8(E F
—V —m).

For neutral atomic systems one must take EF =rn
which gives (for —2m V~ V ) the usual Thomas-
Fermi model. Our new choice is E F

= —w. , since
we are only interested in the electrons that dived
into the continuum of the negative energy states.
This gives

~ V(r) = ep„(r) —(e'/3~2)(2m V+ V')"'

x8(- V-2m).

For the "nuclear" charge distribution we take

p„(r) =ep, 8(R, -r) (7)

with 4n Jp,r'dr = Z, the external "nuclear" charge
We assume R, =r+"', r, being determined by
the density of the nuclear matter. Our numerical
results were obtained with ra= 1.2 fm, A =2Z.
The latter assumption is justified by the result:
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BV/8~I„, =0. (8)

Equations (6') and (8) are therefore eigenvalue
equations for y, which has a clear physical mean-
ing—it is the unscreened part of the nuclear
charge. Z-y gives the charge of the vacuum.

Although this model can only be expected to be
true when Z —y»1, i.e., when the vacuum
screens almost all of the nuclear charge, we
find reasonably good agreement with single-par-
ticle calculations' performed in the vicinity of
the critical potential. We also obtain the right
value for the critical potential.

In Fig. 1 we show the behavior of the eigenval-
ues y and Z-y. We note two key features: (a) y
is monotonically rising as a function of Z and
(b) for Z-. ~ we find y/Z-0. The single-particle
calculations' differ only slightly from our statis-
tical model. The fact that y/Z-0 corresponds
to the situation shown in Fig. 2(a), i.e., IVI

tends to an upper limit. This limit is, incidental-

We find almost total compensation of the nuclear
Coulomb energy.

Since the charge density of the vacuum must be
confined to the vicinity of the externa1 charge,
we require that

V(~)„- —yo. /x

(a is the fine structure constant). For every
choice of Z, y is determined by the boundary con-
dition
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ly, obtained from Eq. (6') by requiring pr = 0 at r
Qo

= —m —[m'+ (3w'ep /e')'"]'"
Since m «lV);, l for electrons, we have approxi-
mately

V~;~ = —(8&)' /2wo = —(300 MeV fm)/~ . (l0)

In ordinary nuclear matter we obtain t/
&;

= —250
Me V.

Figure 2(b) shows the behavior of the real vac-
uum polarization charge. Its radius follows the
nuclear density. In terms of the single-particle
description of Ref. 1 this implies that inclusion
of electron-electron interaction prevents the res-
onances from diving below —250 MeV. Equiva-
lently, the sum of single-particle energy (which
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FIG. 1. The unscreened charge y and the total charge
of the vacuum (Z-y) as a function of Z. The crosses
denote points from Hartree-Fock calculations. The
dashed line denotes the nuclear charge Z.

FIG. 2. The solutions of the relativistic statistical
potential equation (6') for selected values of the nuclear
charge as a function of r. Curve 1, Z = 600; curve 2,
1000; 'curve 8, 2000; curve 4, 5000; curve 5, 10000;
curve 6, 10~; curve 7, 106. (a) The self-consistent po-
tential; (b) the corresponding charge distribution of the
vacuum; (c) the total charge densities, scaled with y
(see Fig. 1).
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now grows only with Z) becomes negligible with respect to the correlation energy

Z,.„=—(e2/S~) f&0[p(x)[0&~x -y( '&Ofp(y)(0&d'xd y,

which keeps on growing as Z' and cancels the
Coulomb energy of the nuclear charge. Figure
2(c) confirms our assumptions about the charge
distribution. For very large Z we obtain essen-
tially a dipole layer at the edge of the external
field source.

Incidentally, the value of p(0) = —p~(0) for large
Z [curves 6 and 7, Fig. 2(b)] serves to confirm
the numerical accuracy of our calculations. This
behavior can be easily understood for infinite "nu-
clear" matter. At this point, we would like to
mention that use of a charge distribution with a
more "realistic" nuclear charge does not influ-
ence our results, if the mean charge radius is
kept constant.

The result with the most important consequenc-
es is that there is a limit to the electrostatic po-
tential. Depending on the density of the external
charge distribution- =which is for our purposes
independent of electromagnetic interactions —only
a finite number of species of charged elementary
particles can create a charged vacuum or form
a Bose condensate. ~ Whether the formation of a
pion condensate for Za2000, as discussed in

Ref. 4, is possible, depends on the details of the
pion-nucleus interaction. '

In the Lee and Wick' theory of abnormal nucle-
ar states, there is a significant gain in the ener-
gy (ca. 150-300 MeV) of the vacuum excitation
whenever a baryon is absorbed. Because of the
compensation of the repulsive electric forces in-
side the nucleus by the polarizat. ion of the vacuum
and the existence of the limiting potential, the
Coulomb interaction will not, most likely, stop
the growth of the abnormal nuclear state. If such
strongly bound states could be created, they
would continue to grow by absorption of normal.
nuclear matter. We find below that an abnormal
state will not continue to grow only if the bind-
ing energy per baryon does not exceed. 90(p~/
p,)" MeV [see Eq. (14)] (ps is the density of
the abnormal state, po is the normal nuclear den-
sity).

We can calculate the energy-per nucleon due to
the remaining, Z-proportional, part of the Cou-
lomb interaction and single-particle energies. A
suitable Hamilton function is obtained, noting that
Eq. (6') can be obtained by minimizing

H[p] = fd'x 2f[d~k/(2m)s]0(k F'[p(x)] —k') [(k'+ m')"'+ m]

+ .' fd'~d'y[p-. ( )+p(~)](4~1.-y I) '[p (y)+ p(y)l. (12)

With respect to p, H is obviously the total elec-
tron and Coulomb energy of the system. AF is
given by

k, = [- (3w'/e')ep]"' (13)

Neglecting the second part of Eq. (12) we ob-
tain the Coulomb+ electron energy per nucleon
to be

H/A = —', ~V„.
~

= (112 MeV fm)/ro. (14)

Thus, addition of a proton and neutron to the ab-
normal nuclear state releases ca. 300-600 MeV
of baryonic energy and costs only - 200 MeV in
Coulomb+electron energy, if, by a spontaneous
positron-production mechanism, the positive
charge of the proton is neutralized.

The above considerations clearly show that in
a macroscopic domain the concept of the charged
vacuum' smoothly goes over into the regular as-
sumption that effects of a constant potential are
unobservable; we are left with the usual theory

of the electron gas, i.e., with the first part of
Eq. (12).

This is understandable if we note that our time-
independent statistical approach has its limita-
tions in macroscopic distances (r»k/mc). We
have assumed that the spontaneous production of
positrons is essentially sudden, which is certain-
ly true for potential wells of the size not much
larger t:han m '=400 fm. It would be wrong to
conclude that the limiting potential described
above is an upper bound for macroscopic devices.
This is understood for potential barriers ~ 2m;
although the channel for spontaneous pair pro-
duction is already open, the tunneling factor
exp(- fVdr) is too small by hundreds of orders
of magnitude. Therefore a macroscopic experi-
ment to determine the value of the limiting poten-
tial is not feasible.

Finally, let us say again that our Eq. (6') is
most suitable to calculate the effects of real vac-
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uum polarization in very strong external fields.
Such calculations performed before only in the
vicinity of the critical potential' already required
great nu&ericaI effort.
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I consider a six-quark model for hadrons. The three new ones possess charges +, 0,—,and sn additional quantum number g (for "gentleness" }. To explain the recently ob-
served resonances, a selection rule is proposed: Electromagnetism violates g spin and
the photon is blind to gentleness. Experimental tests for the idea are discussed.

Recently, in experiments on p+p —l'+ I + ~ at
Brookhaven National Laboratory (BNL) and on
e++e -hadrons at SPEAR, sharp peaks (width
&1.3 MeV) have been observed at, respectively,
the final and initial lepton-pair invariant mass of
3.T GeV. ' Thi. s has been confirmed by experi-
ments at Frascati. ' A second similarly sharp
peak has also been discovered at SPEAR at 3.7
GeV. ' In this note I shall propose a plausible and
interesting explanation for the observed phenome-
na and suggest additional tests for the basic idea.

I et us preserve the gauge-theoretic scheme
for unifying weak and electromagnetic interac-
tions for /ePtons as suggested in the classical
work of Weinberg' and Salam. ' To recapitulate,
very briefly, the theory has the leptons arranged
in a SU(2) Cm U(1) doublet (in all that follows I shall
adhere as far as possible to the notation of Abers
and Lee in their definitive review')

the theory incorporates a Higgs doublet

which undergoes a spontaneous symmetry break-
down such that

As a result, three of the four gauge fieMs pick
up mass while the fourth remains massless and
is identified with the photon.

In an extension to a unified gauge theory for
weak and electromagnetic interactions for had-
rons instead of the traditional Glashow, Iliopou-
los, and Maiani (GIM)7 scheme of four quarks,
let us assume that hadrons are constructed out of
six quarks; that is, in addition to ((I", gt, Ao),

there are three new ones which are collectively
denoted by G,

and a right-handed singlet A, = l~ . In addition,


