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5This estimate is obtained by noting that charge is
conserved in the induced density to about 5%, i.e.,
(fo"p»(x)r dhj/[f Ip»(r) tr dwj ~0.05. We have con-
servatively increased this fraction by a factor of 2
when estimating the accuracy of the energy level shift.
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A part of the hitherto neglected radiative corrections of order e is calculated. Its in-
clusion in the analysis virtually eliminates all the discrepancies between the measured
and the calculated energies of the Sg-4f transitions in muonic atoms of heavy nuclei.

There appeared to be discrepancies between the
measured ' and the calculated~ ' energies of the
5g-4f transitions in muonie atoms of heavy nu-
clei: Pb, Tl, and Hg. The measured energies
are -400 keV, while the calculated values a,re
systematically higher by -50 eV, or 2-3 stan-
dard deviations. The fractional discrepancies

-are roughly 1 part in 10, or -o.'. Since Zo.' is
not a small number for these nuclei, it is desir-
able, at least in principle, to keep the exact de-
pendence on Ze. The dominant correction of - 2
keV comes from the vacuum polarization diagram
1 of order n in Fig. 1. The self-energy diagram
2 of order a' has been completely neglected so
far.

The order of magnitude of diagram 2 can be
seen in the following way. Consider the electron
screening diagram 3 and the atomic polarizability
diagram 4 of the usual perturbation expansion:

H =Hp -Ze/r~ +H, Ze/r, +-5H,

QH =H„,

where H„—Za/r„and H, Zn/r, -represent the
unperturbed muon and electron Hamiltonians,
and H

&
represents the electromagnetic interac-

tion between the muon and the electrons. Since
the wave functions of the atomic electrons behave
more like those in a nucleus of atomic number
Z —1 rather than Z, a better first approximation
is given by the alternative expansion

H =Hp —Za'/rp+H, —Za/r, + Vp(r, )+ 5H,
(2)

5H =Hr —Vq(r )

where V„(r,) represents the electrostatic poten-
tial created by the muon. (The fully self-consis-

tent Hartree-Fock Hamiltonian is not necessary
for the qualitative discussions given here, since
the influence of the electrons on the muonic wave
functions is very small. ) The probability density
of the ls atomic electrons near the origin is
roughly proportional to Z'; therefore, the elec-
tron screening correction changes by an amount
of the order of —3/Z times the original correc-
tion. This change provides a simple estimate for
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FIG. 1. Radiative corrections. The heavy lines rep-
resent the bound muonic states or the exact muon prop-
agators in. the Coulomb field of the nucleus. The dou-
ble lines represent similar states or propagators of
the electron. The hatched double line represents the
exact electron propagator in the Coulomb field of the
nucleus plus the static Coulomb field created by the
muon. The single lines represent the free-electron
propagators. The crosses represent the nucleus. The
photon lines in diagram 2b can be permuted, and such
permutations, not shown in the figure, are included in
the calculation.
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the size of the diagram 4. The new unperturbed
Hamiltonian H, —Zo. /r, + V„(r,) gives a, better de-
scription for both the atomic electrons and all
the virtual electrons and positrons. If the correc-
tions of order e' a.re to be neglected, the expan-
sion (2) should always be preferred over the ex-
pansion (1). The radiative correction of order n
is then given by diagram 5. The difference be-
tween diagram 1 and diagram 5, ——1/Z times
diagram 1, or - —25 eV, provides a, simple esti-
mate for the size of diagram 2.

Since the apparent discrepancies are of the or-
der of the above estimate, it is clearly necessary
to compute the diagram 2. The expansion (2) is
then of no more advantage, since additional count-
er-terms would appear. Diagrams 1 and 2, cor-
responding to the usual expansion (1), are dia-
grams of the noncovariant perturbation theory,
with the origin of the spatial coordinates fixed on
the nucleus. If the subtraction of infinite quanti-
ties is necessary, ambiguities could arise, and
erroneous results could be obtained. Therefore,
it is necessary to study the possible existence
and the subtraction of divergent quantities for
each of the diagrams 1 and 2 carefully.

Since the magnetic moment and the velocity of
the muon in the orbits of interest are very small,
it is sufficient to consider only the Coulomb in-
teraction in the calculation of the higher-order
dia, gram 2. If both photons of diagram 6, which
describes the second-order vacuum-polarization
correction to the photon propagator, represent
instantaneous Coulomb interactions, the depen-
dence of the diagram on t, and t, is given by 5(t,
—t, ). Since t, c t, in diagram 2, diagram 2a is
identically zero. The subtraction of the infinite
photon self-energy function II(k) to yield the reg-
ularized II„(k) is completely irrelevant here. The
situation is totally different for diagram 1. Both
diagrams 1 and la are divergent, and diagram

la, contains a, large observable part. The non-
covariant subtraction of the infinite quantity II(k),
which is involved in the calculation of diagram
1b and higher diagrams by means of the subtrac-
tion of diagram la from diagram 1, must be car-
ried out with great care. ' The usual arguments
for the existence of discrepancies are based on
the term-by-term comparison of diagrams 1 and
2: Diagram 2b is scaled down from diagram 1b
by a factor of —1/Z to -0.5 eV, a value of the
wrong sign and much too small to explain the dis-
crepancies. It is obviously wrong to estimate
diagram 2a from the scaling of diagram 1a by
—1/Z, or to compute diagram 2a by disconnect-
ing one of the photon lines from the muon onto an
external source. It is also wrong to do the same
things for diagrams lb and 2b, in view of the en-
tirely different nature of the subtraction process-
es.

Although the logarithmic divergences in the
photon-photon scattering tensor J„„z(k„k„k„k4)
cancel after symmetrization, there still exists a,

constant term Zp, g(0, 0, 0, 0) =
~ (5p, 5 ~+ 5~ 5,~

+ 5„z5„), which violates gauge invariance. " Con-
sequently, erroneous results could still be ob-
tained in the finite diagram 2. To circumvent
this difficulty, the difference between diagram 2
and an identical diagram with the electron mass
replaced by a much heavier mass, say, the muon
mass, is calculated. The logarithmic divergenc-
es completely disappear in this difference, and
the constant term cannot contribute. The calcu-
lation of this difference is, therefore, unambig-
uous.

The present work follows closely Wichmann
and Kroll's calculation' of the vacuum-polariza-
tion diagram 1 to all orders in Zo. . Na.mely, the
exact Green's function of the electron in an exter-
nal Coulomb field is used to calculate the diagram.
The starting point is the following expression for
diagram 2:

(E, z„+z,-z, )-'l&0la, lv, 1, 2&l', (3)
Ps42

(x~&0, Z,&0)

where the labels 0, IL(, , 1, and 2 refer to the initial muonie state and the intermediate muonic, positron-
ic, and electronic states, respectively. Consider the Coulomb interaction. The angular part can be in-
tegrated to give

n'E( jo, j&, l, l', k„k2)f Uo*(r3)U„(r, )U„*(r,)U, (r4)(r, '/r, '")„„
Ep, jp, l, l', kj, k2

x (r,' /r, ' ")„„,E(k„k„r„r,) d r, d'r, d'r, d'r„

where the muonic states are normalized to f 1U(r) I'd r =1, and in (r,'/r&'")„„, r, is the smaller of
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r; and r, ; x&, the larger. The angular integral is given by

p7'0 l jq)(jo l 7q) (7, l 72)(7~ E 72)
E(j„j„,I, I', k„k,) =(2 j„+1)(2j, +1)(2j,+ I)

(
.

(--, 0 —,') i--,' 0 —,') (--,' 0 —,') (--. 0 —,')
70 ~ ji 10

&& 6,+(2I, +1) (6)
(E 7'„7,1(E' j„j,1

where j = t k I
—2, the parity of the state is given by (—1)""'or (—1)' "' according as k &0 or k & 0; the

factor 5~=1 if the parities (—1)' and (—1)' are compatible with both pairs (0, p) and (1, 2), 5~=0 other-
wise. The remaining factor I(k„k„r„r,) can be expressed as a sum over all possible radial wave
functions of the positron and the electron:

I(k„k„r„r,) =
(P +2+ P

(E, —E„+E,—E,)
'

2
&& Q w;(r„ k„E,)w, *(r„k„E,)w, (r„k„E,)w, *(r„k„E,), (6)

where w;(r, k, E), i =1, 2, denotes the large and the small components of the radial wave functions of
the electron or the positron. The notations used here are the same as those in Wichmann and Kroll's
original work, except that the dependence on the quantum number k is made explicit, and the mass of
the electron is set equal to 1,

The expression I(k„k„r„r,) can be transformed into a double contour integral:

I(k„k„r„r,) =(2wi) ' f dz, f dz, (E, E„+z,-—z, ) 'Tr[K(r„r„k„z,)K(r„r„k„z,)].

The Green's function K(r„r„k,z) is defined by

K;,(r„r„k,z) =Qz(z E) 'w, (-r„k,E)w, *(r„k.,E),

where the sum is over all positive and negative energy states. The contours R and L are shown in Fig,
2. An explicit expression for the Green's function was obtained by Wichmann and Kroll in terms of two
pieces of solutions of the Dirae equation, one being finite at the origin and the other bounded at infinity,
joined together with a finite step discontinuity. The exact form, somewhat complicated, is given in the
original paper. ~ The asymptotic behavior for large values of lz! is given by

K(ri r2 k z)-fexp{ilr. -r, l(z'- I)"'f as lzl -~,
where f is a factor which approaches certain powers of z and lnz.

In Wichmann and Kroll's work, 'the polarization charge depends on the contour integral of TrK(r, r, k,
z). Since r, =r~ =r in their case, the exponential factor disappears, and the asymptotic behavior is giv-
en solely by the factor f. The difficult part of their work consists of expressing the Laplace transform
of the induced charge density as contour integrals and separating the integrand into terms with differ-
ent asymptotic properties. For those terms of the integrand which vanish at least as fast as z for
large t~ t, the contour can be deformed and the only contributions come unambiguously from the inte-
grals along the imaginary axis. For all other terms, the results are divergent or ambiguous, depen-
dent upon the particular way the limiting process for the contour was performed. Such terms they elim-.
inated and interpreted in terms of the charge renormalization.

These difficulties do not exist for the contour integral in Eq. (7). So long as r, tr„ there exists the
exponential damping factor exp(il r, —r, t(z' —1)'~'), where Im(z' —1)"'~ 0 in the cut plane. The con-
tour can always be deformed, and the only contributions come unambiguously from the integrals along
the imaginary axes:

I(k„k„r„r,) = —(2w) 'f dy, f dy, [E,—E„+i(y, y, )] 'Tr[K(r-„r„k„iy,)K(r„r„k„iy,)]. (10)
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TABLE I. Energy shifts.

I v vvvn ev&

R

FIG. 2. Contours L and R in the complex z~ and z2
planes. The crosses represent the poles of the Green's
functions; the heavy lines, the branch cuts.

Element .

Pb
Ba
Pb
U

Particle

Muon
Muon
Kaon
Kaon

Transition

5r-4f
4f-Bd
8j-7i
9k-8j

Shift
{eV)

—85
—22
—28
—BO

The difference'~ I(k„k2, r„r,) —I(k~, k„m &r„
m„r, ), where m„ is the muon mass in units of the
electron mass, is then expanded in powers of Ze.
The leading term, independent of Ze, is identical-
ly zero. The terms proportional to Zn, as well
as all other odd powers of Za, vanish upon inte-
gration, as they should. The (Zo. )' terms, cor-
responding to diagram 2b, and all higher terms
are independent of the particular limiting process
for the contours.

Only the (Za)' terms are evaluated numerical-
ly in this work The. neglect of the (Zn) and high-
er terms is expected to introduce an uncertainty
of the order of (Zn)'-36%. For this reason, the
numerical accuracy of the (Za)' term has been
carried out to about 20%%, and the overall uncer-
tainty is estimated to be about 40%. The results
are given in Table I. It is clear that all the dis-
crepancies concerning the 5g 4f transitio-ns dis-
appear.

The detailed algebraic and numerical works on
the evaluation of the integral are complicated but
straightforward, and will be published in a later
paper. The evaluation of the (Zn)4 and higher
terms is currently under way.
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It turns out that this subtraction does not affect the
numerical results in any appreciable way.


