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We have calculated the static monopole contributions to the (Ze) n vacuum polariza-
tion correction for the 4f, l2 state in muonic Pb. We find an energy shift of —1+0.1 eV
(increased binding). We argue that neglected higher multipole contributions have the
same sign and similarly small magnitude, thus increasing by a slight amount the cur-
rent discrepancy between muonic atom theory and experiment.

There exists a persistent discrepancy between
theory and experiment in the high p-atomic states
of heavy nuclei. In the case of Pb, for example,
the measured 5g», - 4f„, transition energy is
greater than the theoretical prediction by 62+ 21
eV out of a transition energy of 43'7687 eV.
Thorough reviews of the theoretical calculations
exist in the literature. '

Recently, it has been suggested' that the vacu-
um polarization terms of order (Zu)'a', depicted
in Fig. 1(a), may contribute significantly. Since
the experiment provides an important test of
quantum electrodynamics, it is important to have
reliable calculations or estimates of any contrib-
utory effects. We' (and others') have previously
calculated all diagrams of order (Zo. )"o., n odd
[Fig. 1(b)j, for nuclei of finite size. The same
program has been employed here to estimate the
contribution of Fig. 1(a). This is possible be-
cause the muon velocity is sufficiently slow (v'/
c'-0.02 in 4f Pb) that transverse components of
the electromagnetic field can be neglected. Thus
the effect can be represented in second-order
perturbation theory by using the static Coulomb
interaction,

muon appears as a static charge with the initial
state distribution. This probably underestimates
the shift since all higher intermediate -states en-
ter with the same (negative) sign, and our re-
sults indicate that the lower-lying muon states
contribute negligibly.
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where p. is the set of muonic quantum numbers,
p, is the initial muonic state, P (q) are elec-
tron (positron) quantum numbers, and e~ (e,) & 0
is the electron (positron) excitation energy in the
field of the nucleus. We did not use Eq. (1) ex-
plicitly, but it serves to clarify our calculation.

We distinguish two approximations which bound
the second-order perturbation:

(I) The intermediate muon states (p.) are limit-
ed to the single initial state p. o. In this case the
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FIG. 1. Vacuum-polarization contributions to muonic-
atom energy levels.
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(11) The muon excitation energy is neglected.
This permits closure over the muon intermediate
states. One calculates the energy for a point
muon as a function of position of the muon and
then averages over the initial muon density dis-
tribution. This gives an upper bound to the shift
subject to the same qualification mentioned in {I).

In either case, one calculates the energy to
second order in the charge (say z) of the muon.
The muon polarizes the vacuum linearly (order
z) and then interacts (order z) with the polariza-
tion field. It follows from elementary considera-
tions that since we are considering the linear re-
sponse of the field, the interaction energy is

~ =

afar'

p(r) p p(r) d r (2)

where y,~ is the induced potential and p„=—elf„P.
As reported in Ref, 3, we calculate the Dirac

wave functions and resulting vp electron-positron
density in the given. "external" electric field,
here taken to be due to both the nucleus and the
muon. Numerical subtraction of the vp density
linear in the "external" potential removes terms
of order Za and zn. The result at this point is
finite and requires no renormalization (see, how-
ever, Ref. 3). Further subtraction of the vp den-
sity due to the nucleus alone and to the muon
alone removes terms of order (Zo. )'(zo.') and
(Zn)"(zo. )'. The remaining density is of order
(Zn)"{zo.'), n ~1, m&1, n+m~3 a.nd odd. Even
in the usual point perturbation theory, all con-
tributions to these remaining orders are finite
and thus contain no ambiguities associated with
infinite subtractions. The energy shift in any or-
der m is given by Eq. (2) with the factor 2 ' re-
placed by (m+1) '.

Consider first restricting the calculation to
good K = —1 (or + 1), where z is the Dirac quan-
tum number for the electron-positron states.
Then the "external" muon charge is automatical-
ly averaged over solid angle. The result of this
calculation [approximation I, ~ =+1] is ~(4f», )
= —1 eV. In this case, the muon charge is a dif-
fuse shell of thickness -50 fm with (I/r) =1/50
fm. The same calculation using approximation
II (an infinitesimal shell at 50 fm) produced the
same result within the limits of our expected nu-
merical accuracy' (&0.1 eV). Thus the effect of
radial localization is small, i.e., excitation of
the muon to other than the initial state is unim-
portant, For these calculations, we scaled the
"external" muon charge to z =- 5 and then re-
scaled the result in order to ensure sufficient ac-
curacy. A repeat of the calculation for z = —2.5

verified the linearity of the effect and thus the
smallness of the terms which are higher order
in z.

The contribution of I z I = 2 electron-positron
states was also calculated for a spherically aver-
aged muonic charge. The added contribution had
the same sign and was even smaller, about 10%
of the I ~ I =1 contribution. We do not regard this
result as definitive because of the previously
mentioned numerical limit of accuracy. Although
it is possible, a more accurate calculation does
not appear to be warranted.

A proper calculation for approximation II re-
quires solving the two-center (nucleus and muon)
electron problem. This would result in admixing
of various x states through higher multipole in-
teractions. Such a calculation is not practicable
with our program. However, the smallness of
the effect due to the radial localization and to the
spherical l~ l

= 2 contribution is convincing evi-
dence that angular localization is also a small
effect. The i&1=1 to l~ l= 2 off-diagonal mixing
contribution should be down from the l~ j =1 shift
by the order of the square root of the ltd I

= 2 re-
duction. A generous estimate of all contributions
for Ia I&1 would be to set them equal to the I v I

=1 shift. We also see no reason to expect that
the dipole contributions from x =+1 to ~ = —1 mix-
ing are significantly greater than the Iz I =1 mon-
opole contributions. Thus we believe that the
neglected higher multipole interactions add less
than 2 eV to the 1 eV calculated for the static
monopole interaction.

We conclude that the contribution of the vacuum
polarization diagram (Zo.)'a' [Fig. 1(a)] is less
(and perhaps considerably less) than 3 eV for the
5g- 4f transitions in Pb, and in the direction to
increase the reported discrepancy. ' This is con-
sistent with the interpretation that the effect
[which is roughly —1/Z of the (Zu)'n term] can
be attributed to shielding of the nucleus by the
muonic charge, so that the insertion of the muon
as a source into the higher-order graphs weakens
their total effect.

We wish to thank Professor M. Baker for use-
ful discussions.
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5This estimate is obtained by noting that charge is
conserved in the induced density to about 5%, i.e.,
(fo"p»(x)r dhj/[f Ip»(r) tr dwj ~0.05. We have con-
servatively increased this fraction by a factor of 2
when estimating the accuracy of the energy level shift.
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A part of the hitherto neglected radiative corrections of order e is calculated. Its in-
clusion in the analysis virtually eliminates all the discrepancies between the measured
and the calculated energies of the Sg-4f transitions in muonic atoms of heavy nuclei.

There appeared to be discrepancies between the
measured ' and the calculated~ ' energies of the
5g-4f transitions in muonie atoms of heavy nu-
clei: Pb, Tl, and Hg. The measured energies
are -400 keV, while the calculated values a,re
systematically higher by -50 eV, or 2-3 stan-
dard deviations. The fractional discrepancies

-are roughly 1 part in 10, or -o.'. Since Zo.' is
not a small number for these nuclei, it is desir-
able, at least in principle, to keep the exact de-
pendence on Ze. The dominant correction of - 2
keV comes from the vacuum polarization diagram
1 of order n in Fig. 1. The self-energy diagram
2 of order a' has been completely neglected so
far.

The order of magnitude of diagram 2 can be
seen in the following way. Consider the electron
screening diagram 3 and the atomic polarizability
diagram 4 of the usual perturbation expansion:

H =Hp -Ze/r~ +H, Ze/r, +-5H,

QH =H„,

where H„—Za/r„and H, Zn/r, -represent the
unperturbed muon and electron Hamiltonians,
and H

&
represents the electromagnetic interac-

tion between the muon and the electrons. Since
the wave functions of the atomic electrons behave
more like those in a nucleus of atomic number
Z —1 rather than Z, a better first approximation
is given by the alternative expansion

H =Hp —Za'/rp+H, —Za/r, + Vp(r, )+ 5H,
(2)

5H =Hr —Vq(r )

where V„(r,) represents the electrostatic poten-
tial created by the muon. (The fully self-consis-

tent Hartree-Fock Hamiltonian is not necessary
for the qualitative discussions given here, since
the influence of the electrons on the muonic wave
functions is very small. ) The probability density
of the ls atomic electrons near the origin is
roughly proportional to Z'; therefore, the elec-
tron screening correction changes by an amount
of the order of —3/Z times the original correc-
tion. This change provides a simple estimate for

Ia Ib
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FIG. 1. Radiative corrections. The heavy lines rep-
resent the bound muonic states or the exact muon prop-
agators in. the Coulomb field of the nucleus. The dou-
ble lines represent similar states or propagators of
the electron. The hatched double line represents the
exact electron propagator in the Coulomb field of the
nucleus plus the static Coulomb field created by the
muon. The single lines represent the free-electron
propagators. The crosses represent the nucleus. The
photon lines in diagram 2b can be permuted, and such
permutations, not shown in the figure, are included in
the calculation.
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