⁵²Fe(6.8 MeV) β -Decaying Isomeric State*

D. F. Geesaman, R. Malmin, R. L. McGrath, and J. W. Noé Department of Physics, State University of New York, Stony Brook, New York 11974

and

J. Cerny

Lawrence Berkeley Laboratory and Department of Chemistry, University of California, Berkeley, California 94720 (Received 26 August 1974)

An isomeric state in ⁵²Fe has been located at $E_x = 6.83 \pm 0.25$ MeV with the reaction ⁴⁰Ca(¹⁴N, *pn*)⁵²Fe. The state decays by positron emission to the (11⁺) 3.837-MeV state of ⁵²Mn with $T_{1/2} = 56 \pm 8$ sec. The probable spin and parity of the isomer is 12⁺.

It is well known that residual interactions acting within the ground-state shell-model configuration can produce long-lived "spin-gap" isomers at high excitation with unusual decay properties. For example, the $J^{\pi} = \frac{19}{2}^{-}$ isomers at $E_x \cong 3.1$ MeV in the mirror nuclei ⁵³Fe and ⁵³Co decay by E4, M5, and E6 γ -ray transitions¹ ($T_{1/2} = 2.5$ min) and by combined proton- β^+ emission² ($T_{1/2} = 242$ msec), respectively. Up to now, however, the only reported example of this phenomenon in an even-even nucleus is the 45-sec α -decaying state at 2.93 MeV in ²¹²Po.^{3, 4}

This Letter reports the observation of an isomeric state analogous to that in ²¹²Po at 6.83 ± 0.25 MeV excitation in the N=Z nucleus ⁵²Fe. The state decays by β^+ emission ($T_{1/2} = 56 \pm 8$ sec) and evidently has $J^{\pi} = 12^+$, the maximum spin attainable in the $(f_{7/2})^{-4}$ configuration. The ⁵²Fe isomer, as well as the absence of isomerism⁵ in the conjugate nucleus ⁴⁴Ti, can be accounted for by shell-model calculations based on the $(f_{7/2})^{\mp 2}$ spectra of ⁵⁴Co and ⁴²Sc, respectively.

The ^{52m}Fe activity was first observed in the course of delayed $-\beta - \gamma$ coincidence experiments designed to study proton-rich nuclei in the $f_{7/2}$ shell. A natural calcium target $\sim 2 \text{ mg/cm}^2$ thick evaporated onto a gold backing was bombarded with 46-MeV ¹⁴N ions from the Stony Brook FN Van de Graaff accelerator. A slotted rotating wheel periodically interrupted the incident beam and provided a signal to enable the electronics and initiate a linear ramp voltage. Electrons passing through a thin Mylar window were detected in a collimated NE102 scintillator, and γ rays were observed with a 50-cm³ Ge(Li) detector. For each beam-off event the β - and γ -energy signals, the β - γ time-to-amplitude signal, and the magnitude of the ramp voltage were converted to digital words and stored sequentially

on magnetic tape for later analysis.

Figure 1 shows a typical delayed- γ -ray coincidence spectrum. In addition to lines from known⁶ β activities, γ rays at 622, 870, 929, 1416, and 2038 keV are apparent. Recently, a γ -ray cascade through high-spin states in ⁵²Mn has been observed in studies of the reactions ⁵¹V(³He, 2n)⁵²Mn and ²⁴Mg(³²S, 3pn)⁵²Mn by Signorini and Stefanini.⁷ The five transitions in their ⁵²Mn level scheme (Fig. 2) appear to be identical to those seen in Fig. 1, suggesting that the activity observed results from the β^+ decay of a high-spin isomeric level formed in the reaction ⁴⁰Ca(¹⁴N, pn)⁵²Fe. The results of our experiments to date can be summarized as follows.

The five γ rays associated with the new activity have intensities in the delayed- γ -ray singles spectra consistent with the ⁵²Mn cascade,⁷ and they decay with a common half-life of 56±8 sec. The ^{42m}Sc peaks provide an internal check on the method; these data give $T_{1/2} = 61 \pm 7$ sec in agreement with previous work.⁶

The β spectra corresponding to the five ⁵²Mn transitions (and corrected for the underlying Compton continuum and chance coincidences) are consistent with a common end point, and therefore these spectra were summed in the final Kurie-plot analysis. With a scintillator calibration obtained from radioactive sources and the β^+ decay of ²⁷Si [E_{β^+} (max) = 3.788 MeV ⁶], the measured β^+ end point is 4.35 ± 0.25 MeV. This places the isomeric level at 6.83 ± 0.25 MeV in ⁵²Fe.

The β^+ branch to the 3.837-MeV 52 Mn state apparently accounts for >80% of the decay width. In particular, there was no positive evidence in the delayed- γ -ray singles spectra for a 52 Fe 2^+ - ground-state transition ($E_{\gamma} \cong 0.85$ MeV) with the isomer half-life.

FIG. 1. Typical spectrum of delayed γ rays in coincidence with β particles from the 40 Ca + 14 N reaction at E_{14N} = 46 MeV. The prominent peaks are labeled by the activity parent and the γ -ray energy in keV.

Finally, there is further evidence (independent of the work of Ref. 7) which corroborates our assignment of the (56 ± 8) -sec activity to ⁵²Fe. A preliminary yield curve for the isomer production peaked at $E_{14_{\rm N}} \cong 45$ MeV, a value consistent with p, n emission from the compound nucleus 54 Co. It is interesting to note in this context that in recent *in-beam* studies of γ rays from the ³⁹K +¹⁶O and ⁴⁰Ca +¹⁴N reactions there was no evidence for the expected 52 Fe 2^+ - ground-state transition.⁸ "Trapping" of the yrast γ -ray cascade by a high-spin isomer could explain these negative results. We were also able to produce the ^{52*m*}Fe activity with the reaction ⁵⁰Cr(α , 2*n*)⁵²Fe at α -particle energies near the maximum obtainable from our accelerator. The β - γ coincidence yield (much smaller than in the ${}^{40}Ca + {}^{14}N$ reaction) increased by a factor of ~ 4 in going from $E_{\alpha} = 27$ MeV to 28 MeV, consistent with the ⁵²Fe(6.8 MeV) threshold of 24.3 MeV.

The measured log*ft* value of 4.93 ± 0.15 together with the observed β -spectrum shape establishes that the ${}^{52m}\text{Fe} \rightarrow {}^{52}\text{Mn}$ decay is of the allowed type, and it therefore follows from the tentative ${}^{52}\text{Mn}$ 11^+ assignment⁷ that ${}^{52m}\text{Fe}$ has $J^{\pi} = 10^+$, 11^+ , or 12^+ . The 10⁺ possibility seems rather unlikely

FIG. 2. Decay scheme for 52m Fe. γ rays corresponding to the indicated transitions in 52 Mn (Ref. 7) are observed in coincidence with β particles from the isomer. A portion of the calculated ($J \ge 8$) 52 Fe ($f_{7/2}$)⁻⁴ spectrum is shown at the right-hand side.

VOLUME 34, NUMBER 6

in view of the fact that β decay to the (9⁺) ⁵²Mn state would then be allowed, but is not observed. Similarly, in an $(f_{7/2})^n$ scheme the only ⁵²Fe 11⁺ state would be the T = 1 analog of the 3.837-MeV state in 52 Mn, and this 52 Fe 11^+ state is thus predicted to lie ~ 2.5 MeV above 6.8 MeV. The implication of the above arguments that 52^{m} Fe has $J^{\pi} = 12^{+}$ depends critically, of course, on the work of Ref. 7. On the other hand, it seems clear from the shell-model calculations (see below) that the only possible β -isomeric state has $J^{\pi} = 12^{+}$. With adoption of this assignment, it follows from Weisskopf estimates and the absence of γ -ray isomerism that the lowest ⁵²Fe 8^+ and 10^+ states lie no lower than ~700 and ~2 keV below the isomeric level, respectively. This is rather different from the situation in the conjugate nucleus 44 Ti, where the 8^+ , 10^+ , and 12^+ states have recently been located at 6.51, 7.67, and 8.04 MeV, respectively.⁵

In our $(f_{7/2})^{\pm 4}$ shell-model calculations the ^{42}Sc spectrum was taken from Sherr et al.,⁹ while the 54 Co spectrum of J = 0 to 7 states was assumed to be 0, 0.94, 1.446, 1.824, 2.645, 2.086, 2.900, and 0.197 MeV, respectively.¹⁰ Results for the ⁴⁴Ti 8⁺, 10⁺, and 12⁺ states are $E_x = 6.08$, 7.37, and 7.69 MeV, respectively. Apart from an overall downward shift of ~ 350 keV, these values are in very good agreement with experiment.⁵ A portion of the ⁵²Fe spectrum is shown at the righthand side in Fig. 2; the calculated excitation of the 12^+ state is 6.49 MeV. It should be pointed out that the positions¹⁰ of the 3^+ , 4^+ , 5^+ , and 6^+ states in ⁵⁴Co are not yet certain. If the energies of the 4^+ and 6^+ T = 1 states are taken instead from 54 Fe, then the calculated 52 Fe 10⁺ state lies 16 keV below the 12^+ state. As this example illustrates, the isomeric character of the ⁵²Fe 12⁺ state is quite sensitive to the details of the residual interaction. [This differs from the situation in the $(f_{7/2})^{-3}$ nuclei,¹¹ but is analogous to the results of Auerbach and Talmi for ^{211, 212} Po.⁴] According to the present $(f_{7/2})^{-4}$ calculations, there should be an observable $12^+ \rightarrow 8^+ E4 \gamma$ -ray branch from the ⁵²Fe isomer. A further search for this interesting decay mode is in progress.

The authors are indebted to C. Signorini and A. Stefanini for permission to use their results before publication.

*Work supported in part by the National Science Foundation.

¹K. Eskola, Phys. Lett. <u>23</u>, 471 (1966); J. N. Black, W. C. McHarris, and W. H. Kelly, Phys. Rev. Lett. <u>26</u>, 451 (1971).

²K. P. Jackson *et al.*, Phys. Lett. <u>33B</u>, 281 (1970); J. Cerny *et al.*, *ibid.*, p. 284.

³I. Perlman *et al.*, Phys. Rev. <u>127</u>, 917 (1962); N. K. Glendenning, *ibid.*, p. 923.

⁴N. Auerbach and I. Talmi, Phys. Lett. <u>10</u>, 297 (1964). ⁵J. J. Kolata, J. W. Olness, and E. K. Warburton, Phys. Rev. C 10, 1663 (1974).

⁶W. W. Bowman and K. W. MacMurdo, At. Data Nucl. Data Tables <u>13</u>, 89 (1974); P. M. Endt and C. van der Leun, Nucl. Phys. <u>A214</u>, 1 (1973).

⁷A. Stefanini, thesis, Università di Padova (unpublished); C. Signorini and A. Stefanini, to be published. The tentative spin and parity assignments are based on γ -ray angular distributions.

⁸J. J. Kolata, private communication; J. W. Noé, R. W. Zurmühle, and D. P. Balamuth, unpublished.

⁹R. Sherr, T. S. Bhatia, D. Cline, and J. Schwartz, Ann. Phys. (New York) 66, 548 (1971).

¹⁰J. Schwartz, R. Sherr, and T. Bhatia, Bull. Amer. Phys. Soc. <u>13</u>, 1446 (1968); S. I. Hayakawa, J. J. Kraushaar, P. D. Kunz, and E. Rost, Phys. Lett. <u>29B</u>, 327 (1969); H. Rudolph and R. McGrath, Phys. Rev. C <u>8</u>, 247 (1973); G. Bruge *et al.*, Nucl. Phys. <u>A129</u>, 417 (1969); N. S. P. King, C. E. Moss, H. W. Baer, and R. A. Ristinen, Nucl. Phys. <u>A177</u>, 625 (1971).

¹¹J. Vervier, Nucl. Phys. <u>A103</u>, 222 (1967).