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The inverse range of correlation for nearest-neighbor, ferromagnetic, Ising models is
shown to vanish continuously as the temperature approaches the critical temperature. An
example is also given where this property fails. The critical index obeys v=2/(d +1).
Attention is drawn to the relevance of continuity to mass renormalizability in Euclidean

boson quantum field theory.

A fundamental assumption underlying the scal-
ing theory! of critical phenomena, and a fortiori
the renormalization-group theory? of critical phe-
nomena, is that the range of correlations, ¢, is
the single important parameter and that it tends
to infinity at the critical temperature. I will
prove this assumption for ferromagnetic, near-
est-neighbor, Ising models. In consequence, fol-
lowing arguments analogous to those of Glimm
and Jaffe® for Euclidean :¢,* quantum field theo-
ry, I am able to bound the correlation-length
critical exponent v =2/(d + 1) and the susceptibili-
ty exponent y =1,

In the case of Euclidean, lattice, boson field
theory, &7!is directly analogous to the renormal-
ized mass m. The continuity of £™! with respect
to the temperature is the analog of the continuity
of m with respect to the bare mass. This key
step is required to establish mass renormaliza-
bility. A fuller exposition of this subject includ-
ing mass renormalizability for :¢,* will be given
elsewhere.*

The continuity of the inverse range of correla-
tion is not just a mathematical refinement, but
appears to be related to the short-range nature '

BJ(la =Dl /&2

of the interactions. I give the following example
where the inclusion of a long-range interaction
causes ¢! to be discontinuous at the critical
point. The Hamiltonian is®

H=-dJ 2, 0,0;-b(2,0)%N, (1
nearest
neighbors

where 0;=+1, N is the number of spins, and the
spins are on a plane square lattice. The second
term is a “mean-field”-type interaction. The
critical temperature is the solution of the equa-
tion

2bx(B, N =1, (2)

where x is the standard, reduced, magnetic sus-
ceptibility.® The inverse correlation length is
that implied by the first term (two-dimensional,
Ising model) for T> T, and drops discontinuously
to zeroat T=T,.

In order to guide considerations, it is conve-
nient to consider the spin-spin correlation func-
tion for the Gaussian model. [Spins are distrib-
uted as exp(- ;0% instead of o=x1 for the Ising
model.] Joyce’ gives, for large separations in d
dimensions,

BIEC D2 exp(~|a—-b|/&)

<030-ﬁ> ~ Kl/z(d-1)(|£" 6'/&) ~

(2m V2|3 - B[ 2

21/2(d+ﬂﬂ(a=1§/2|g_m(d-l)/zr (3)

where K,(x) is a modified Bessel function of the second kind, and

£=[Bd/(1 - 2dBJ) |2,

(4)

We are now in a position to introduce the definition of £7! for a finite system of N¢ spins. It is essen-
tial to include the asymptotic power law as well as exponential aspects of the correlation function. An
arbitrary coefficient which goes to zero with £7! is included in the power law term. Use free boundary
conditions,

é"=rgip{£'ll 0 <{oro3) <3

I,s

PRIEEKIVES :
+£-a|y_s[(d-1)/2}, (5)
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where a >0 is a temperature-independent constant, and compute

(opo3)= 25 orozexp(BI 2 0307)/ 3, exp(BJ 205 3) (6)

{0 =21} T v {o—o =11} u,v

with 2/ the sum over a d-dimensional space lattice and u, v are nearest-neighbor sites. Since
u,v

flx)=e 41+ x%B]™! (n

is monotonic decreasing from f(0) =1 to f(«) =0 for real nonnegative x, and 0 < <(opoz)s1 by the magni-
tude of the ¢’s and Griffith’s inequality,® Eq. (5) defines a value of £7! in the range 0< < ¢"l<eo, The val-
ue so defined decreases monotonically as the system size N increases. To see this adjoin a hyperlayer
of uncoupled spins; then (o7 0N+1> 0, which will not be the minimum in Eq. (5). If we now couple these
spins into the lattice then, by the Griffiths® and Kelly and Sherman® inequalities, every spin-spin cor-
relation function increases, and so

ETHN +1) SETHN). (8)
Thus, in the limit as N -«
£71= limg'I(N) (9)

as £7120., I remark that the only way that ¢! can approach zero is if either (o;02)=1 for all r, s [by
the Griffiths- Kelly Sherman (GKS) inequalities] or |17 - § |-, by the structure of the definition. The
definition of £7! has not been proven to be the same as that of the true inverse range of correlation
£p”%. Itis true at least that £;,7' > £7', and that they go to zero together, although the rate may pos-
sibly not be the same.

Following Glimm and Jaffe® my aim is to establish a uniform bound on the derivative of ¢! with re-
spect to K =3J, the temperature variable. For N finite, £ 'is a continuous, piecewise differentiable
function of K. By direct calculation from Eq. (5), we have, differentiating the minimum term for finite
N,

¢t
K =

, 407 030505) — (07 05 0507)

0s- E—
(oro7)|T -S| ’

I/

% (10)
»V
where use has been made of the GKS inequalities to prove positivity, and a factor multiplying the de-
rivative which depended on |r -S| and £ ! was bounded from below. By use of one of a general set of
inequalities due to Lebowitz,®

<0‘10720304> - <010-2><O-30'4> s <0-10-3><0’20’4> + <0.10;1)(0.20’3)’ (1 1)

we can bound Eq. (10) by

a% o5 $0703)(0305) +(0F0 07X00%)
12
D S E ] (a2
Without 51gn1f1cance to the argument, we set u=v since they are nearest-neighbor sites. Noticing
that the inequality in (5) is an equality for the minimum (r, s) we may then bound (12) by

<— 35 1< [1+& % r-s]@2]exp[¢ -S| |-t~ [s-]]
0 Z; [1+§-a|F_‘ﬂ(a-1)/2][1 £ 98 —f|@T/z] ’ (13)

where ¢q is the lattice coordination number. If

I¥ - S| is not large, then Eq. (13) gives an imme- 1 semimajor axis is
diate finite bound. If |r —s|tends to infinity with TS T 2
N, a little calculation is required. Let us consid- (+3lr-sP¥e~j|r -5+ Teoalt (14)

er the hyperellipsoids on which the argument of .

the exponential in Eq. (13) is constant. They have  where the right-hand side is valid if { < |r -s|.
their foci at r and s. If we parametrize them by In the limit of large but finite IT - §|, we may re-
¢, the length of the semiminor axes, then the place summation in (13) by integration and inte-
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grate first along the direction of the major axis
of the hyperellipsoid. We may reduce the domi-
nant term in (14) to be proportional to

« 28712 dg
f s Zexp( -3 )1;_§|(d-1)/2’

(15)

where the constant of proportionality is dimen-
sion dependent and use has been made of the de-
crease in the volume of a hypercylindrical slice
near the ends of the hyperellipsoid to offset the
decrease in the denominator in Eq. (13). The
form (15) is correct for d = 2; for d=1 the inte-
gration does not occur and the integral is re-
placed by a constant. I conclude, integrating (15),
that

0s—-0¢71/0K < g0tz (16)

or

Os_a(g"l)oc+(d+1)/2/aK§r\ (17)

a >0, uniformly in N, and K. Thus,. Eq. (17) im-
plies, in the limit as N -, the continuity of a
positive power of £7! and hence of £ !itself. Now
I can exhibit for sufficiently high temperature,

by series methods, a nonzero £°!, By Onsager’s
solution!! for the two-dimensional Ising model
and by the GKS inequalities®® there are low enough
temperatures for which long-range order exists,
which forces £' -0 by our definition. It follows
therefore from (17) that there is a critical value
of K <« for d =2 such that

<[P K, - K) ]t/ lat@ry/2], (18)
Thus I conclude
v=2/(d+1) (19)

as (18) holds for any o >0. This relation is
obeyed by the known exact results v=1, d=2, and
by the numerical estimates v=0.64, d=3 and v
=~(0.5, d 24. While (18) does not hold with a =0,
(19) does as the standard definition of an exponent
is not changed by, for example, logarithmic cor-
rection terms. The bound on index y for the sus-
ceptibility x follows by a short argument due to

270

by inequality (

Jaffe'? which applies here as well.
dx/dK =2 2,[(0305030%) - (0507)(0307) ]
U,y T (20)
<E’ Z[(O*G Ko507) +(0g0r)X0503)]

By definition,

This, by summing first over
t, becomes, if ¢ is the coordination number of

the lattice,

0 sdy/dK <qx? (21)

which implies y 21, if x~»as £ 1-0.

The arguments given can be extended to general
discrete spin, and also to continuous spin with
weight functions of the nature exp(- aS*+55? by
the method of Simon and Griffiths.!®* This exten-
tion is important in the field-theory case.*

The author is pleased to acknowledge helpful
conversations with Professor J. Glimm and Pro-
fessor A. Jaffe on this subject.

*Work performed under the auspices of the U. S.
Atomic Energy Commission.
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