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Critical Exponent Inequalities and the Continuity of the Inverse Range of Correlation~
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The inverse range of correlation for nearest-neighbor, ferromagnetic, Ising models is
shown to vanish continuously as the temperature approaches the critical temperature. An
example is also given where this property fails. The critical index obeys v- 2/(8+1).
Attention is drawn to the relevance of continuity to mass renormalizability in Euclidean
boson quantum field theory.

A fundamental assumption underlying the scal-
ing theory' of critical phenomena, and a foxtiort'
the renormalization-group theory' of critical phe-
nomena, is that the range of correlations, $, is
the single important parameter and that it tends
to infinity at the critical temperature. I will
prove this assumption for ferromagnetic, near-
est-neighbor, Ising models. In consequence, fol-
lowing arguments analogous to those of Glimm
and Jaffe' for Euclidean:y, '. quantum field theo-
ry, I am able to bound the correlation-length
critical exponent v ) 2/(d+1) and the susceptibili-
ty exponent ) -1.

In the case of Euclidean, lattice, boson field
theory, $

' is directly analogous to the renormal-
ized mass m. The continuity of $

' with respect
to the temperatur e is the analog of the continuity
of m with respect to the bare mass. This key
step is required to establish mass renormaliza-
bility. A fuller exposition of this subject includ-
ing mass renormalizability for:y„4: will be given
elsewhere. 4

The continuity of the inverse range of correla-
tion is not just a mathematical refinement, but
appears to be related to the short-range nature

of the interactions. I give the following example
where the inclusion of a long-range interaction
causes $

' to be discontinuous at the critical
point. The Hamiltonian is'

H = —J Q g,.g,. —b(Q,.g,)2/&
neares t

neighbors

where 0; =+ 1, N is the number of spins, and the
spins are on a plane square lattice. The second
term is a "mean-field"-type interaction. The
critical temperature is the solution of the equa-
tion

2b)((P, J) = 1, (2)

where y is the standard, reduced, magnetic sus-
ceptibility. ' The inverse correlation length is
that implied by the first term (two-dimensional,
Ising model) for T) T, and drops discontinuously
to zero at T=T,.

In order to guide considerations, it is conve-
nient to consider the spin-spin correlation func-
tion for the Gaussian model. [Spina are distrib-
uted as exp(- —,'o') instead of g =*1for the Ising
model. ] Joyce' gives, for large separations in d
dimensions,

pJ(ia bl/8"-" ' - - pJ&" "'exp( Ia-bl/&)b)
(2 iig2dl, la-q Ifi/2(&-i) ~ uz(i(+i) (a-i)/2l l(a-iPz~[a —U

where K,(x) is a modified Bessel function of the second kind, and

g = [PJ/(1 —2dPJ)]' '
(4)

We are now in a position to introduce the definition of $ for a finite system of N spins. It is essen-
tial to include the asymptotic power law as well as exponential aspects of the correlation function. An
arbitrary coefficient which goes to zero with $ is included in the power law term. Use free bounda. ry
conditions,

r, s

268



QQLUME )4, NUMBER 5 PHYSICAL REVIEW LETTERS 5 FEBRUARY 1975

where n &0 is a temperature-independent constant, and compute

(a-, a-, ) = Q v-, v-, exp(PJ Q' a-„v-,)/ Q exp(j'3J Q'a„- „-)
f.~-„=+~k u, v $a

with Q the sum over a. d-dimensional space lattice and u, v are nearest-neighbor sites. Since
ll

~
U

y(x) =e-"~[1+x a]-'

is monotonic decreasing from f(0) =1 to f(~) =0 for real nonnegative x, and 0 ~(a;o-) ~1 by the magni-
tude of the v's and Griffith's inequality, " Eq. (5) defines a value of $

' in the range 0 $ '&~. The val-
ue so defined decreases monotonically as the system size N increases. To see this adjoin a hyperlayer
of uncoupled spins; then (cr, oN-„ ) =0, which will not be the minimum in Eq. (5). If we now couple these
spins into the lattice then, by the Griffiths and Kelly and Sherman inequalities, every spin-spin cor-
relation function increases, and so

~ '(X+1) = ~-'(X).

Thus, in the limit as N -~
$

' = lim ) '(N) (9)

as $
' ~ 0. I remark that the only way that $

' can approach zero is if either (a;a-) = 1 for all r, s [byI'

the Griffiths-Kelly-Sherman (GKS) inequalities] or Ir —s l-~, by the structure of the definition. The
definition of g

' has not been proven to be the same as that of the true inverse range of correlation
It is true at least that $r '-

$ ', and that they go to zero together, although the rate may pos-
sibly not be the same.

Following Glimm and Jaffe' my aim is to establish a uniform bound on the derivative of $
' with re-

spect to K= PJ, the temperature variable. For N finite, $ is a continuous, piecewise differentiable
function of K. By direct calculation from Eq. (5), we have, differentiating the minimum term for finite

(10)

(v, o,o,v,) —(a,cr,)(v,v,) ~ (o,v, )(v, v,) +(v,v,)(v,cr,),
we can bound Eq. (10) by

8 ( +, (v", a-, a„-v-,) —(v; v-, )(cr-„v-,)
8K - - (a-, a-, ) I

r - s
It

where use has been made of the GKS inequalities to prove positivity, and a factor multiplying the de-
rivative which depended on ~r —s i and g

' was bounded from below. By use of one of a general set of
inequalities due to Lebowitz, "

, (v-, v„)(a-,v-„) "+(v-, v;)(v-, v-„)
BK - - (v-, cr-, ) I r

Without significance to the argument, we set u = v since they are nearest-neighbor sites. Noticing
that the inequality in (5) is an equality for the minimum (r, s) we may then bound (12) by

(12)

sg-' [I+( "Ir —sI&' '»']exp[( '(Ir-sI- Ir-tI —Is-tI)]
sK ~ [1+g "Ir-7I« '&'][1+g Is —7I&' '&»] (13)

where q is the lattice coordination number. If
I r —s ~ is not large, then Eq. (13) gives an imme-
diate finite bound. If jr —s j tends to infinity with
N, a little calculation is required. Let us consid-
er the hyperellipsoids on which the argument of
the exponential in Eq. (13) is constant. They have
their foci at r and s. If we parametrize them by

the length of the semiminor axes, then the

semimajor axis is

( g'+ —,
'

I
r —s I')"'=

2 I
r —s I + +. . . , (14)

where the right-hand side is valid if f «
~ r —s ).

In the limit of large but finite Ir —s I, we may re-
place summation in (13) by integration and inte-
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or

0 ( 5( ~ 1) 0'+(d+1)/2/9K ( P (17)

n)0, uniformly in N, and K. Thus, Eq. (17) im-
plies, in the limit as N -~, the continuity of a
positive power of $

' and hence of $
' itself. Now

I can exhibit for sufficiently high temperature,
by series methods, a nonzero $ '. By Onsager's
solution" for the two-dimensional Ising model
and by the GKS inequalities" there are low enough
temperatures for which long-range order exists,
which forces $ '-0 by our definition. It follows
therefore from (17) that there is a critical value
of K& ~ for d) 2 such that

1 w [r (K K) ]1/[n+(d+1)i2] (18)

Thus I conclude

v) 2/(d+1) (19)

as (18) holds for any u )0. This relation is
obeyed by the known exact results v=1, d=2, and
by the numerical estimates v=0. 64, d=3 and v
= 0.5, d ~ 4. While (18) does not hold with a = 0,
(19) does as the standard definition of an exponent
is not changed by, for example, logarithmic cor-
rection terms. The bound on index y for the sus-
ceptibility X follows by a short argument due to

grate first along the direction of the major axis
of the hyperellipsoid. We may reduce the domi-
nant term in (14) to be proportional to

—2( f2 dff ~ exp I ~ ~ ~(d 1)i210 Ir —s~ ~r —s

where the constant of proportionality is dimen-
sion dependent and use has been made of the de-
crease in the volume of a hypercylindrical slice
near the ends of the hyperellipsoid to offset the
decrease in the denominator in Eq. (13). The
form (15) is correct for d ~ 2; for d = 1 the inte-
gration does not occur and the integral is re-
placed by a. constant. I conclude, integrating (15),
that

0- —9( '/9K-r ('" '»2

Jaffe" which applies here as well. By definition,

d g/dK = Q' Q [(o"„v-o-,(x",) (g ,o-, )(-.cr , g-, )]-
u, v

-.Z'Z, [& -..-. )& -, -, & ( -. -, &&.-, -.&]
u &

by inequality (11). This, by summing first over
t, becomes, if q is the coordination number of
the lattice,

(20)

0 -dy/dK ~qy2, (2i)

which implies y -1, if X-~ as $ -0.
The arguments given can be extended to general

discrete spin, and also to continuous spin with
weight functions of the nature exp(- aS'+bS2) by
the method of Simon and Griffiths. " This exten-
tion is important in the field-theory case. 4
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