¹⁰J. P. Senter, Rev. Sci. Instrum. <u>40</u>, 334 (1969). ¹¹P. Schofield, J. D. Litster, and J. T. Ho, Phys. Rev. Lett. <u>23</u>, 1098 (1969). ¹²R. B. Bird, W. E. Stewart, and E. N. Lightfoot.

Transport Phenomena (Wiley, New York, 1960), p. 568.

¹³R. F. Chang, P. H. Keyes, J. V. Sengers, and C. O. Alley, Phys. Rev. Lett. <u>27</u>, 1706 (1971). ¹⁴S. C. Greer, unpublished.

¹⁵E. D. Siebert and C. M. Knobler, unpublished.

¹⁶R. Hocken and M. R. Moldover, unpublished.

Surface-Mode Renormalized Density-Functional Theory of the Free Surface of ⁴He⁺

W. F. Saam and C. Ebner

Department of Physics, The Ohio State University, Columbus, Ohio 43210 (Received 24 October 1974)

We present a density-functional theory, renormalized to account self-consistently for the effects of the zero-point motion of surface modes, for the free surface of ⁴He at zero temperature. Although detailed liquid-structure effects are included, no static density oscillations near the free surface are found in contrast to a theory of Regge. For the case of ⁴He bounded by a single hard wall, density oscillations near the wall are obtained.

Recent years have seen the application of density-functional theory to a number of problems, principally those associated with the electron density in the vicinity of metal surfaces.¹ but also including some in the areas of liquid helium,² nuclear matter,³ and classical liquids.⁴ In this paper we present the results of a density-functional calculation of the density profile of the free planar surface of liquid ⁴He at zero temperature. The theory used is a generalization of previous efforts, designed to take into account selfconsistently the effects of changes in the longwavelength (i.e., wavelengths greater than a few interatomic spacings) mode structure of the liguid when a free surface is formed in an otherwise uniform system. Specifically, we include the very important effects due to the zero-point motion of both the surface modes (ripplons) and surface-altered bulk modes (phonons reflected at the surface) on the density profile and on the surface tension. Our results resolve the intriguing question, raised by previous theories of the ⁴He free surface,⁵ as to whether or not there are oscillations in the density near the surface. We find no such oscillations even though we include hard-core effects (via a realistic structure factor) which might conceivably give rise to them. Further, we have applied our theory to the case where the liquid is bounded by a hard wall (ours is the first realistic calculation for this situation), and we find density oscillations similar to those found by Liu, Kalos, and Chester⁶ for a hard-sphere boson system bounded by two hard walls. This contrasting behavior shows that a free surface is simply too soft to permit static oscillations in the density. It is worthwhile to point out that the oscillations we obtain in the case of a single hard wall may reasonably be expected to persist in the situation where the helium is in contact with a real substrate, next to which one or two solid ⁴He lavers are formed⁷ (because of the substrate Van der Waals attraction), followed by the liquid. If so, one might expect a significant effect on the Kapitza boundary resistance in the temperature region $(1-2^{\circ})$ K) where the effective thermal-phonon wavelengths are comparable to those of the static density oscillations [recall that the phonons can strike the surface at an angle].

We begin with a description of what we term the bare density-functional (BDF) theory, "bare" in that it does not include the renormalizing effects of zero-point motion associated with the surface. Our approach is similar to that of Hohenberg and Kohn.⁸ We approximate the exact energy functional E[n] in terms of a local energy density plus an expansion in powers of the difference between densities at different points in the fluid; the series is terminated in second order, and the first-order term vanishes for reasons of symmetry. Thus,

$$E[n] = \int d^3 r \epsilon(n(\mathbf{\bar{r}})) + \int d^3 r d^3 r' W(\mathbf{\bar{r}}, \mathbf{\bar{r}}')[n(\mathbf{\bar{r}}) - n(\mathbf{\bar{r}}')]^2.$$

(1)

Here $\epsilon(n)$ is the energy density of a uniform system having density n and the kernel $W(\mathbf{\bar{r}}, \mathbf{\bar{r}}')$ may be thought of as an effective interaction between different portions of the fluid arising from non-uniformity. To obtain an expression for $W(\mathbf{\bar{r}}, \mathbf{\bar{r}}')$, we apply (1) to the limiting case of a weakly non-uniform fluid. Following an argument similar to that of Ref. 8, we find, in the stated limit, $W(r, r') = -\frac{1}{4} \sum_{\vec{q}} \exp[i \mathbf{\bar{q}} \circ (\mathbf{\bar{r}} - \mathbf{\bar{r}}')] \chi_q^{-1}(n_0)$, where χ_q is the density-density response function at

wave number q for the uniform system having number density n_0 . For the case of general nonuniformities, we will retain this form with the replacement $n_0 \rightarrow [n(\mathbf{\dot{r}}) + n(\mathbf{\dot{r}}')]/2 \equiv \overline{n}$ in order to incorporate the density dependence. Since

$$\chi_q^{-1}(n) \xrightarrow{} \chi_q^{0} = \hbar^2 q^2 / 4m n$$

(the free-particle limit), the integral in our expression for W is irregular at large q. It is convenient to separate out χ_q^0 in order to obtain a regular kernel, in which case (1) becomes

$$E[n] = \int d^{3}r \,\epsilon(n(\vec{\mathbf{r}})) + (\hbar^{2}/2m) \int d^{3}r \, [\nabla n^{1/2}(\vec{\mathbf{r}})]^{2} - \frac{1}{4} \int d^{3}r \, d^{3}r' \{ \sum_{q} \exp[i\vec{\mathbf{q}} \circ (\vec{\mathbf{r}} - \vec{\mathbf{r}}')] [\chi_{q}^{-1}(\vec{n}) - \chi_{q}^{0^{-1}}(\vec{n})] \} [n(\vec{\mathbf{r}}) - n(\vec{\mathbf{r}}')]^{2}.$$
(2)

It is a very pleasing feature of the present theory that the well-known quantum pressure term⁹ [that involving $\nabla n^{1/2}(\mathbf{r})$] emerges in a completely natural fashion and does not have to be put in by hand, as has been done in the essentially phenomenological theory of Padmore and Cole.²

In order to make practical use of (2) we require a reasonable approximation for χ_q . Our choice is to employ the result of the Feynman theory¹⁰: $\chi_q^{-1} = \hbar^2 q^2 / 4m S_q^2 n$, where S_q is the usual liquid-structure factor. This approximation includes the structure of the liquid in a very reasonable way and renders actual computation of χ_q as a function of density sensibly tractable.

Now the equilibrium configuration assumed by the system is the solution (subject to appropriate boundary conditions) of $\delta E[n] / \delta n(\mathbf{\hat{r}}) = \mu$, where μ is the chemical potential. Thus, from (2) we find a nonlinear integro-differential equation which may be solved for $n(\mathbf{\hat{r}})$.

The quantities $\epsilon(n)$ and $S_q(n)$ have been obtained via application of the theory of Mihara and Puff.¹¹ This theory yields an S_q at the equilibrium density for zero pressure in excellent agreement with experiment. At higher densities the peaks in S_q become more pronounced and move to slightly larger values of q, whereas the peak structure gradually disappears as the density is reduced from its zero-pressure value.

We have solved numerically the integro-differential equation subject to the boundary conditions $n(z = -\infty) = 0$ and $n(z = +\infty) = n_0$, appropriate to a bath of ⁴He with a planar free surface. The solution, which we call the bare density and denote by $n_b(z)$, is depicted in Fig. 1.

The surface tension σ_b associated with $n_b(z)$ is given by

$$\sigma_b = E[n_b(z)] - \int_{-\infty}^{\infty} dz \ \mu n_b(z) \,. \tag{3}$$

Calculation yields the result $\sigma_b = 0.003 \text{ erg/cm}^2$. which, when compared to the experimental surface tension $\sigma = 0.378 \text{ erg/cm}^{2}$,¹² is a clear indication that some very important physics is missing from the BDF. A clue as to what has been ignored is found in the original paper of Atkins¹³ on the surface tension of ⁴He. In that paper he estimates the contribution of the zero-point motion of the ripplons to be of the same order of magnitude as the experimental surface tension. Of course, an exact density-functional theory would incorporate this effect. However, all extant practical theories of this nature,¹ the above one included, embark from the uniform-system limit and thus contain no information about surface modes. Reconciling this sort of theory with one like that of Atkins, which commences in

FIG. 1. The bare (n_b) and renormalized (n) densities at the free surface and the density at a hard wall (n_w) as functions of z. n_P is the bulk equilibrium density at pressure P.

zeroth order from a model with a perfectly sharp surface, is the problem to which we now address ourselves.

We begin by noting that we may regard, after Gross⁹ and Pitaevskii,⁹ the BDF result as a semiclassical equation determining a classical field $n_b(z)$. The small oscillations of the density are then, when quantized, the elementary excitations of the system. Since the bare surface $n_b(z)$ is quite sharp, we may obtain all but the very shortwavelength excitations (whose effects are at least partially accounted for in the BDF through the density dependence in ϵ and W) from the theory of quantum hydrodynamics for a liquid which has a sharp surface characterized by surface tension σ_b . The contribution $\sigma_{zp}(\sigma_b)$ to the surface tension (surface energy per unit area) due to the difference between the zero-point motion of the system with a surface and an equivalent amount of bulk liquid is thus found to be a sum of two terms 14 :

$$\sigma_{\rm zp}(\sigma_b) = \sigma_{\rm zp}^{\rm r\,ipplon}(\sigma_b) + \sigma_{\rm zp}^{\rm phonon}(\sigma_b), \qquad (4)$$

and each of these contributions may be expressed in terms of the ⁴He density ρ , velocity of sound s, and a cutoff wave number q_m (determined below) in addition to σ_b .

Were we simply to add σ_{zp} to σ_b , the resulting σ would be inconsistent for two reasons. The first, and most obvious, is that σ_b appears in $\sigma_{zp}(\sigma_b)$, whereas the real modes are determined by σ . Self-consistency requires the replacement $\sigma_{zp}(\sigma_b) + \sigma_{zp}(\sigma)$, an effective mode renormalization. Secondly, we must include the fact that there will be zero-point motion of the surface as a consequence of the surface modes. Let $\zeta(x, y)$ be the displacement of the surface from its equilibrium value (at z = 0 in the sharp-surface model). Then, the renormalized density is approximately¹⁵ $n(z, \sigma_b) = \langle 0 | n_b(z + \zeta(x, y)) | 0 \rangle$, $| 0 \rangle$ being the ground state. Use of the fact that $\zeta(x, y)$ is expressible in the form

$$\sum_{\vec{q}, l} e^{i\vec{q}\cdot\vec{r}} [\zeta_{-\vec{q}, l} * a_{-\vec{q}, l}^{\dagger} + \zeta_{\vec{q}, l} a_{\vec{q}, l}^{\dagger}],$$

where \vec{q} is a wave vector parallel to the surface, *l* is an index describing both ripplons and phonons, $\xi_{\vec{q}, l}$ is a mode amplitude, and $a_{\vec{q}, l}^{\dagger}$ creates an excitation characterized by \vec{q} and *l*, allows one to put $n(z, \sigma_b)$ in the form

$$n(z,\sigma_b) = \int_{-\infty}^{\infty} dz' n_b(z-z) \\ \times \exp(-z'^2/2\zeta_0^2) (2\pi\zeta_0^2)^{-1/2}, \qquad (5)$$

where the mean-square displacement $\zeta_0^2 \equiv \langle 0 | \zeta^2(x, y) | 0 \rangle$ may be simply expressed in terms of σ_b , ρ ,

s, and q_m . The zero-point motion thus produces a Gaussian broadening of the surface. Mode renormalization of the density is effected by the replacement $n(z, \sigma_b) \rightarrow n(z, \sigma)$, and renormalization of the density-functional contribution to the surface tension is then handled by substituting $n(z, \sigma)$ for $n_b(z)$ in (3). Consequently, the total surface tension is

$$\sigma = E[n(z,\sigma)] - \int_{-\infty}^{\infty} dz \,\mu n(z,\sigma) + \sigma_{zp}(\sigma) \,. \tag{6}$$

This result, together with (5), provides us with a fully self-consistent set of equations from which we have determined σ , $n(z,\sigma)$, and ζ_0 as functions of q_m .

To determine q_m we relate it to the surface width¹⁶ (governed by ζ_0 since the bare surface is very sharp) by the statement $q_m \zeta_0(q_m) = \gamma$, where γ is a constant of order π (as the width is approximately $2\zeta_0$). Now, for large q_m (~1 Å⁻¹), $\zeta_0(q_m)$ is a decreasing function of q_m because increasing q_m increases σ , forcing the surface to become stiff for high-wave-number ripplons in a compressible fluid (one result being the high-qlimit, sq, of the ripplon frequency). This has the consequence that $q_m \zeta_0(q_m)$ possesses a maximum. Its value (and our choice of γ) $\gamma_m = 3.28$ at the maximum is the smallest value of γ for which $\gamma = q_m \zeta_0(q_m)$ and (6) possess unique solutions, given numerically by $q_m = 0.99 \text{ Å}^{-1}$ and $\sigma = 0.384 \text{ erg}/$ cm². The resulting renormalized density $n(z, \sigma)$ is plotted in Fig. 1. The experimental surface tension is 0.378 erg/cm². The contribution of σ_{zp} to σ is typically one-half as large as the contribution from the density functional. Our calculated free-surface width is somewhat greater than that found by calculations based on approximate wave functions.¹⁷ This predicted width could probably most easily be given an experimental test by elastic scattering of polarized light near the Brewster angle.¹⁸

In order to be certain that our theory is indeed capable of producing oscillations in a physical situation where there is little doubt that they exist, we have applied it to the case where the free surface is replaced by a hard wall [i.e., boundary conditions $n_w(0) = 0$, $n_w(+\infty) = n_P$, a constant, determined by the pressure P required to hold the liquid against the wall]. In this case we did not solve $\delta E[n_w]/\delta n_w(z) = \mu$ but used the (in principle equivalent) procedure of minimizing $\sigma_{wall} = E[n_w] - \int_0^\infty dz [\mu n_w(z) - P]$ with respect to variations in $n_w(z)$.¹⁹ A ten-parameter minimization produced the result shown as n_w in Fig. 1. No zero-point renormalization of the density is required here since the surface is not free to move. It is quite gratifying that n_w shows behavior similar to that found by Liu, Kalos, and Chester⁶ in their direct integration of the Schrödinger equation for a system of hard-sphere bosons between two hard walls.

One of us (C.E.) thanks the Battelle Memorial Institute for support while part of this work was carried out.

†Research supported by National Science Foundation Grant No. GH-31650A-1 and an Ohio State University Research Grant.

¹For an excellent review, see N. D. Lang, in *Solid State Physics*, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1973), Vol. 28, p. 255.

²See, e.g., T. C. Padmore and M. W. Cole, Phys. Rev. A 9, 802 (1974).

⁴For a review, see C. Croxton, Advan. Phys. <u>22</u>, 385 (1973).

⁵Y. M. Shih and C.-W. Woo, Phys. Rev. Lett. <u>30</u>, 478 (1973); C. C. Chang and M. Cohen, Phys. Rev. A <u>8</u>, 313, 1930 (1973). These authors have performed microscopic calculations of the surface density profile using approximate wave functions. No oscillations were found. However, these workers used a minimization scheme in which the surface-shape function was allowed to have at most a few parameters. Using what can be regarded as a very rudimentary form of BDF theory T. Regge, J. Low Temp. Phys. <u>9</u>, 123 (1972), obtained significant oscillations.

⁶K. L. Liu, M. H. Kalos, and G. V. Chester, in *Monolayer and Submonolayer Helium Films*, edited by J. G. Daunt and E. Lerner (Plenum, New York, 1973), p. 95.

⁷See, e.g., J. H. Scholtz, E. O. McLean, and I. Rudnick, Phys. Rev. Lett. 32, 147 (1974).

⁸P. Hohenberg and W. Kohn, Phys. Rev. <u>136</u>, B864 (1964).

⁹E. P. Gross, Nuovo Cimento <u>20</u>, 454 (1961); L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. <u>40</u>, 646 (1961) [Sov. Phys. JETP <u>13</u>, 451 (1961)].

- ¹⁰R. P. Feynman, Phys. Rev. <u>94</u>, 262 (1954).
- ¹¹N. Mihara and R. D. Puff, Phys. Rev. <u>174</u>, 221 (1968).
- ¹²H. M. Guo, D. O. Edwards, R. E. Sarwinski, and
- J. T. Tough, Phys. Rev. Lett. <u>27</u>, 1259 (1971).
- ¹³K. R. Atkins, Can. J. Phys. <u>31</u>, 1165 (1953).
- ¹⁴C. Ebner and W. F. Saam, to be published.

¹⁵This ignores the contributions from zero-point density fluctuations below the surface. Detailed calculations show these to be negligible.

¹⁶Use of separate two- and three-dimensional Debye cutoffs $q_m^{\ r} = \sqrt{3\pi} n_0^{1/3} = 1.395 \text{ Å}^{-1}$ and $q_m^{\ p} = (18\pi^2 n_0)^{1/3} = 1.568 \text{ Å}^{-1}$ for phonons and ripplons gives $\sigma = 0.429$ erg/cm², expected to be an overestimate since, for example, the bulk-phonon spectrum ceases to be phononlike near $q = 0.8 \text{ Å}^{-1}$. Determination of both cutoffs by the requirement [the imaginary part of the ripplon frequency $\omega_q^{\ r}$ has been computed by W. F. Saam, Phys. Rev. A 8, 1918 (1973)] $\text{Im}\omega_q^{\ r}/\text{Re}\omega_q^{\ r} = 1$ gives $q_m = 0.973 \text{ Å}^{-1}$ and $\sigma = 0.379 \text{ erg/cm}^2$. Thus, all cutoffs give fairly reasonable σ 's, but our choice is to be preferred since it is determined self-consistently within our theory. In a single (but variable) cutoff theory, for q_m between 0.95 and 1.05 Å⁻¹, $n(z,\sigma)$ varies at most by $0.02n_0$ relative to the curve in Fig. 1, while σ varies between 0.369 erg/cm² ($q_m = 0.95 \text{ Å}^{-1}$) and 0.414 erg/cm² ($q_m = 1.05 \text{ Å}^{-1}$).

¹⁷The variational calculations of Shih and Woo and Chang and Cohen (Ref. 5) are similar to our theory in that σ is obtained by varying n(z). Their theories, based on the variational principle, automatically, but implicitly, contain zero-point motion, while ours isolates this motion and carefully examines its important effects.

¹⁸One measures the ellipticity of the scattered light. See P. Drude, *Theory of Optics* (Longmans, Green & Co., New York, 1907), p. 292.

¹⁹The form used for the trial function is

$$n_w(z) = n_0 [1 - (1 + \sum_{p=1}^N \alpha_p z^p) \exp(\beta z^2)]^2,$$

where the α_p and β are varied. The reason for using this method of solution is that in repeated iteration of the integro-differential equation for $n_w(z)$, each succeeding solution is very sensitive to small errors in the density oscillations in the preceding one and a convergent solution was not obtained, in contrast to the free-surface case.

³J. W. Negele, Phys. Rev. C <u>1</u>, 1260 (1970).