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Semiclassical Approximation in a One-Body Potential
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For a system of noninteracting fermions in a local potential with no discontinuous edges,
an explicit series in the expansion parameter S~ is derived for the "smooth" part of the en-
ergy. The method is based on the semiclassical partition function developed by Wigner and
Kirkwood. Numerical calculations are done for spherical and deformed Woods-Saxon poten-
tials. Comparisons are made with other methods, and in particular the numerical accuracy
of the Strutinsky smoothing is tested.

It is well known" that one can extract the dom-
inant contribution of shell effects to nuclear mass-
es by considering the nucleons to be moving in
a realistic one-body shell-model-type potential.
One calculates in this potential the sum of the
occupied single-particle energies, and substracts
from it the part that varies smoothly with parti-
cle number and deformation. In the widely used
Strutinsky method, ' this smooth part is obtained
by smearing the eigenenergies in the energy
space, and in finite potentials this involves smear-
ing over a set of suitably chosen artificial un-
bound states in the continuum. " In another ap-
proach, advocated by Bohr and Mottelson, ' one
examines the asymptotic form of the energy for
large spatial dimension of the potential, and
writes the smooth energy as a sum of terms pro-
portional to the volume, surface area, etc. Sie-
mens and Sobiczewski' have calculated the first
two terms of this series for a spherical Woods-
Saxon potential. In this note we shall develop an
alternative method which emphasizes the semi-
classical nature of this so-called smooth energy. J

For a one-body potential that has no discontinu-
ous edges, we shall derive an accurate and read-
ily calculable expression for this energy in a
power series of A', involving the potential and
its derivatives. In this note we shall only con-
sider a local attractive potential which may be
spherical or deformed, and omit the spin-orbit
and Coulomb potentials. The Coulomb potential
is excluded only for the sake of simplicity, but
nontrivial modifications are necessary to take
account of the spin-orbit part. These are feasi-
ble, and detailed practical calculations will be
published elsewhere.

We use the partition-function' ' approach to
arrive at the semiclassical series for the ener-
gy. The semiclassical partition function was
written down by Wigner'o and Kirkwood" more
than forty years ago, and has been used, amongst
other applications, in obtaining higher-order cor-
rections to the classical second virial coeffi-
cient. " For a given potential U(r), the one-body
semiclassical partition function is expressed"
as (with a spin degeneracy of 2),

Z, , (d)=h—, [)+&ee(I3)+)e ee (d)+ ] exp — + U)d d'rd'P,
p'
2M

where we have omitted the terms with odd powers of h since they vanish onP integration. Here M is
the nucleon mass and p an inverse temperature; the latter will not appear in our final result. The ex-
pressions for zv, and u4, which may be found in Uhlenbeck and Beth, "contain scalar combinations of
the gradients and higher derivatives of U(r ) and the momentum p. The P integrations in these expres-
sions are done analytically. For a given number of fermions (say neutrons) N in the potential well, the
Fermi energy A. and the semiclassical energy E may be directly worked out using the fact that the den-
sity of states is the inverse Laplace transform of the partition function. We obtain

N=L- '[z„(P)IP], F. ='AN- Lr '[z„(P)IP'],

where I.~ ' denotes the Laplace inverse with respect to X. Note that although the classical partition

(2)
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function given by the first term in the series (1) diverges for finite potentials, N and E, given by (2),
are perfectly well defined. ' In fact, the classical term alone yields the usual Thomas-Fermi (TF) re-
sult. After having done the p integrations in Z„(p), Eq. (2) may be used to obtain N and E which, up
to order h.', are"

2M
(3)

3/2 2

E= ( d'a (
—',(I- U)' +U(l —U)' ']+— [(l —U)' V U —U(X —U)

' V U]). (4)

Here the integrals are cut off at the classical
turning point r ~ such that U(r ~) = t].. We empha-
size that we have also worked out the next term of
order 8' for central potentials, which is straight-
forward, and have evaluated it numerically. We
do not give its expression here since it is some-
what lengthy, and its contribution to E is small
(see Table I). For a, given number of neutrons
N, 7 may be calculated from Eq. (3), and E from
Eq. (4). Note that in these equations, the terms
of order k are the corrections to the standard
TF results.

Numerical calculations have been done for
spherical Woods-Saxon potentials and also for
the deformed potentials as parametrized by Eqs.
(VII, 5) and (VII, 21) of Brack et al. ,

" taking N=
Z=A/2. For the spherical case, U= V,[1+ exp(r
-R)/a] ', and we chose V, =-44 MeV, a=0.67
fm, and R =1.27A'~' fm. The calculations were
done for about twenty "nuclei" in the range A =40
to 500, and a few typical results are displayed in
Table I, with the layout explained in the caption.
It will be seen that for such potentials the numer-
ical convergence of our series is excellent, and

TABLE I. Smooth energy in spherical Woods-Saxon
well. All energies are in MeV. The parameters of the
potential are given in the text. The first column gives
the nucleon number in a hypothetical nucleus with N=Z
=A/2. The second, third, and fourth columns give Pio&,
E~ &, and E~4~, which are the contributions of the leading
TF term, the term of order 52, and the term of order
h, respectively, in the semiclassical series. The fifth
column is the sum of these to give the semiclassical en-
ergy to order h . The last column gives the result of
the Strutinsky calculation, with the associated numeri-
cal uncertainty in parentheses.
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we can claim to have found E for the spherical
case within an absolute accuracy of 0.1 MeV.

Our results are also compared with the smooth
energies Es obtained from Strutinsky calcula-
tions. In such calculations, the single-particle
energies were obtained by diagonalizing the Ham-
iltonian in a harmonic-oscillator basis of opti-
mum size (8 to 14 shells), and quasibound states
in the continuum were included. " The station-
ary condition' for Es was carefully applied to
minimize the ambiguity with respect to the smear-
ing parameter y and the curvature correction or-
der which was varied from 4 to 16. This ambi-
guity increases for lighter nuclei for the poten-
tials considered here, and we therefore limit the
comparison to A) VO. Note that in such compar-
isons we have included the estimate of the trun-
cation error in Es, which is larger than 10 MeV
for the heavier nuclei. A detailed discussion of
the Strutinsky calculations will be found in Sobic-
zewski et al." In Table II we display the results
of a calculation A =164 for the axially symmetric
deformed potential of Brack et al."mentioned
earlier. In this case we have neglected in the
semiclassical E the contribution of the A' term,
which is positive and of the order of 1 MeV and
should improve the agreement further.

TABLE II. Smooth energy in deformed potential (A.

=164). All energies are in MeV. The deformed poten-
tial is axially symmetric, and is defined in Ref. 14 (see
text). Here the parameter C is varied while the param
eter 5 =0. The second column gives the semiclassical
result from Eq. (4), while the last column is the Stru-
tinsky result with the associated uncertainty in paren-

thesess.

72
164
204
260
292
416

—1368.3
—3344.7
-4229.8
—5484.8
—6208.4
—9045,1

52.5
88.8

102.3
119.7
129.1
162.5

0.8 —1315.0
1.0 —3254.9
1.0 —4126.5
1.1 —5364.0
1.1 —6078.2
1.1 —8881,5

—1315.4 (1.2)
—3256.0 (1.2)
—4126.6 (0.8)
—5364.4 (0.8)
—6078.6 (0.8)
—8882.8 (1.2)

1.0
1.2
1.4
1.6

—3348.0
—3343.2

3321o 1
—3280.7

tat

gs

—3347.4 (0.4)
—3343.1 (1.2)
—3320.3 (0.9)
—3279.6 (0.8)
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We see that for both spherical and deformed
potentials, the Strutinsky smoothing yields re-
sults in agreement with our values. The differ-
ence of about an MeV is within the numerical un-
certainties of the Strutinsky calculation, shown
within parentheses in the tables.

Finally, for the spherical case, we find that
the smooth energy E in the range A =40 to 500
may be accurately fitted by a series of the form

E = C,A+ C~A + C,A' '+ C4 + C,A ' '

The leading (TF) term in the series (4) yields
the coefficients (in MeV) C, = —26.10, C, =34.81,
C3 —7.83, C4 ———8I .75, and C, = 94.8 5, while the
inclusion of the 8' and 5' correction terms alters
these values to C, = —26.10, C, = 37.65, C, = —7.13,
C4 ———80.48, and C, =95.46. Note that the TF
contribution to h not only contains all the volume
term but also the bulk of the surface and curva-
ture terms for the ease of a Woods-Saxon poten-
tial with realistic surface thickness. Our volume
and surface terms are in excellent agreement
with those found by Sobiczewski et al."using the
same potential. Note that our expansion of E in
powers of 0' not only emphasizes the semiclas-
sical nature of this quantity, but it also demon-
strates that the convergence of this series is
much faster than an expansion in powers of A' '
for the Woods-Saxon potential considered here.
Our method, which adds correction terms to
the TF result in a systematic manner, has no
free parameters, makes no reference to the
states in the continuum, and involves integrals
that are easily and accurately calculable using
a computer.
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