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We investigate the turbulence excited by an ion beam in an unmagnetized plasma in con-
nection with the linear theory of the ion-beam-plasma instability, Depending on beam
velocity, one- or three-dimensional turbulence can be expected. These two types are
experimentally observed by looking at space correlation functions.

The turbulence generated by beam-plasma in-
teraction is known to diffuse particles in velocity
space. Among the processes by which such diffu-
sion occurs, theory' has pointed to the effect of
unstable electrostatic waves propagating off an-
gle from the beam velocity. Thus, whereas the
E field can only be axial in one-dimensiona. l (1D)
systems, it can be oblique in 3D plasmas. The
particle velocities are not only decelerated or ac-
celerated, but also deviated. ' This 3D effect has
an important bearing on the final state of the in-
teraction. ' The object of this paper is to present
a correlation method for measuring the structure
of this random E-field turbulence. We chose the
ion-beam-plasma system since its most unstable
modes are off axis, unlike with the electron
beam. Moreover, the occurrence of oblique prop-
agation in this type of turbulence was seen in nu-
merical results, 4 and observed in an experiment
in which discrete frequency components' were
cor r elated.

We first establish the 3D predictions of the lin-
ear theory of the ion-beam instability. ' Experi-
mental results obtained by correlation techniques
are reported, showing two types of turbulence:
plane 1D turbulence and 3D turbulence with oblique
E fields.

The 3D /ineax instability. —The 3D dispersion
relation for electrostatic waves in an unmagnet-

ized plasma ls w r1tt en

(d1+/ ', d'v(~ —k. v) 'k. '=0,

where the sum is over species s (electrons, plas-
ma ions, and beam ions) of distribution function

f, and plasma frequency u&, = (n, e'/e, m, )'".
The distributions are assumed Maxwellian. A

1D solution' to Eq. (1) depends on four parame-
ters: beam velocity V„rela.tive density, rela-
tive temperature, and plasma-ion-to-electron
temperature ratio. The 3D analysis introduces
two new parameters: the perpendicular tempera-
tures of the beam. and of the plasma ions. For-
tunately, the double-plasma-machine' method of
ion-beam formation provides a useful simplifica-
tion. The ions of the source plasma are assumed
to have the same density and temperature as the
plasma ions. Accelerating the source ions be-
tween two plane grids changes their parallel dis-
tribution into a positive tail of a truncated Max-
wellian, "with uniquely defined density, velocity,
and temperature, while the perpendicular tem-
perature is unchanged. The electron-to-plasma-
ion temperature ratio and the beam velocity are
the only parameters left. Once these are known,
Eq. (1) can be solved for each orientation (and
modulus) of k to give the frequency and growth
rate of unstable modes.
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FIG. l. Growth-rate contours of the ion-beam-plas-
ma instability in a two-dimensional wave-vector space.
k vectors are normalized to the Debye wave number.
Electron-to-plasma-ion temperature ratio is 5, ion
mass is 40 (argon). The most unstable wave is indicat-
ed by a dot; outer contours correspond to zero growth.
(a) V& ——1.15 (times the ion-acoustic speed C ); growth
rates y (normalized to the ion-plasma frequency) on
maximum 9.3x10 2; contours for y=8xl0 and 5

x10 . (b) Vb=2oli &max=4. 5x10; contours for y=(4,
2, 1,0.5, 0.1)x 10 . (c) V~ ——2.5; off-axis lobe, j/max =2.2
xl0, contour for y=l0; on-axis lobe, pm~=6
xl0, contour for y=4x10 '. (d) V~=3.5; off-axis
lobe, &max =3.7x10; on-axis lobe, pm' =9.2 xl0 '.

For T,/T, = 5, in argon, four such solutions
are shown in Fig. 1 as growth-rate contours in
the (k ii, kA) plane. Wave numbers k, growth
rates y, and V~ are normalized to the Debye wave
number (ne'/e, T,)'i', ion-plasma frequency (ne'/
e,m, )'+, and ion-acoustic velocity C, =(T, /m;)'i',
respectively. The points indicate the k vector
extremities of the most unstable waves (largest
growth rate y). The outer contour is the limit
for marginal stability (y = 0).

As V, increases, the instability starts when V,
=0.7, and is concentrated on the axis. %hen V~
=1.15 [Fig. 1(a)], the maximum growth rate is
9.3xl0 ' on axis [contours shown are for (8 and
5) x10 '], and the unstable k's have an half-angu-
lar spread of 22 . This is the ion-ion hydrody-
namic instability, whose phase velocity is close
to 1. This type of instability behaves more or
less like Cherenkov emission of ion-acoustic
waves by a supersonic beam. " As V, rises above
1.4, the most unstable wave number becomes
oblique, and the emission angle 9 increases to
30' at V, =2.1 [Fig. 1(b)], to 42' at V, =2.5 [Fig.
1(c)], and to 56' at V, = 3.5 [Fig. 1(d) ]. At rela-
tively large beam velocities [Figs. 1(c) and 1(d)],

2 3 Vb

FIG. 2. Unstable modes of i&near theory compared
with turbulence characteristics, as a function of V~.
(a) Theoretical results on the most unstable wave: full
line is the emission angle 0 (right scale); dashed line,
the growth rate y (left scale). (b) Experimental results
on the correlation coefficient at radial distance x =6
mm (full line, right scale); and the mean square den-
sity fluctuations at maximum (normalized to the square
of the mean density) (dashed line, left scale). Correla-
tion coefficient falls from 0.96 to 0.16 when 0 rises
from 0' to 20' (and V& from 1.35 to 1.9).

an extra, axial lobe develops. This is the elec-
tron-ion kinetic instability. Its growth rate is
smaller than for the corresponding ion-ion insta-
bility, and the phase velocity identifies it as the
slow-beam mode. " The growth rates y of the
most unstable modes (dashed line), and their
emission angles (full line), are plotted in Fig.
2(a), as a. function of V, . y is positive for V,)0.7, and reaches a maximum value of 0.104
when V, = 1.4. The angle g is an increasing func-
tion of V, starting from zero at V, =1.4.

Spatial stmctuxe of tice turbulence. —The ex-
periment is performed in the multipole"'" dou-
ble-plasma' device [diameter of homogeneous
plasma 10 cm; argon pressure 4x10 4 Torr, T,-
=0.1 eV, T, =0.5-1 eV, n =(5-10)x10' cm '].
The noise characteristics are measured with two
spherical probes of 0.7 mm diam. One of these
probes (A.) can be moved along the z axis (direc-
tion of beam velocity) while the other (B) can
move radially (x axis). They a,re positively bi-
ased with low-impedance circuits; the collected
electron current in the saturation branch serves
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as a measure of the density. The signals are
read and ac amplified in identical, wide-band
circuits, and fed into a multiplier. A low-pass
filter then provides the mean value of the prod-
uct: (AB). Also, connecting the same signal (A
or B) to both multiplier inputs provides (A') and
(B'). The correlation coefficient can thus be cal-
cula. ted:

„&gn')/n,'
-5.104

i((AB)
—1 0 1

2 Z(cm)

2
Z (cm)

C =(AB&/((A'&&B'&)'" (2)

In Fig. 2(b), the two probes were set at the
same distance from the beam source, z, =36 mm,
but x =6 mm apart. The dashed line is the mean
square density fluctuation (5n'), related to the
square of the mean density n, . It behaves much
like the predicted maximum growth rate [Fig.
2(a)]. From the background noise level (rms den-
sity fluctuation of 5xl0 '), it sta, rts to rise at V~
= 0.5, reaches a maximum (rms fluctuation of
3.6x10 ') when V, =1.4, and then decays down to
its initial value.

The most instructive result is the correlation
coefficient C (full line) between two points in the
same z plane. When 8=0 [Fig. 2(a)], C is very
close to 1, as expected for a one-dimensional
spectrum of waves, all propagating along the z
axis. But when 8 is predicted to increase from
0' to 20', C falls down sharply to 0.16: This de-
stroyed coherence characterizes a three-dimen-
sional turbulent spectrum. The further increase
of C merely connects it to the background noise
value.

In the conditions of 3D turbulence, C is a rapid-
ly decreasing function of the radial distance x be-
tween the two probes: It decays from 1 to 0.2
within a distance of the order of the wavelength. '~

For 1D turbulence, a typical structure is shown
in Fig. 3, where the beam velocity was 1.35. The
upper plot is the square of the relative-density
fluctuation, as a function of z: Starting from the
source, it undergoes spatial growth by a factor
of 10' before reaching saturation and subsequent
decay. The correlation function (AB) is plotted
as a function of the relative probe position (a vec-
tor of components z along the beam velocity di-
rection, and x across) (AB) is. independent of x,
except for x) 7 cm (the plasma edge). The corre-
lation coefficient (2) has a value close to unity on
the z = 0 line, i.e., when the two probes lie in
the same plane parallel to the grid. Then, by
Schwartz's theorem, the random density (or po-
tential) functions of time, at any two points in
such a plane, are linearly dependent. The fluctu-
ations there have the same phase, and propaga-
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FIG. 3. Spatial correlation function in a plane turbu-
lence. V& is 1,35. Upper plot is the mean square rela-
tive density fluctuation along the axis. Correlation co-
efficient is conserved across the plasma radius, and
close to 1 when z = 0. This correlation function gives
an accurate idea of a typical wave pattern.

tion is thus one dimensional, along the z axis.
Furthermore, the space-time correlation func-
tion identifies the dispersion relation of these
fluctuations as being the ion-ion hydrodynamic
unstable mode. " Space- Fourier transforming
Fig. 3 results in the spectral density function.
This spectral density peaks on the k„axis (ki
=0), with a maximum at k i,

——0.25kD and a rela-
tive half-width of 0.3.

The ion-beam-plasma turbulence thus follows
rather closely the characteristics predicted from
its linear unstable modes. Agreement is particu-
larly good for the onset of instability and on- or
off-axis emission of the most unstable modes.
When the turbulence is three-dimensional, ran-
dom E fields perpendicular to the axis can dif-
fuse beam particles in velocity space by deflect-
ing their trajectories. The space correlation
method which we describe could be a very effi-
cient way to look at this heating process.
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A one-parameter scaling function s(x) of x =k(, where ( is the correlation length and k
the wave number of a density or concentration fluctuation in a Quid, is derived from a
phenomenological field theoretic approach. On the basis of a positive-definite spectral
function, we exploit the requirements of a three-particle threshold and the correct as-
ymptotic approach as x- ~. The resulting s(x) is compared with the Fisher-Burford
approximant obtained from numerical studies of the three-dimensional Ising model.

The anomalous -dimension critical exponent g
is a measure of the deviation of the critical cor-
relation function of a fluid from ornstein-Zer-
nike' (0-Z) or mean-field behavior. " High-pre-
cision light-scattering measurements by Lunacek
and Cannell' gave g =0.074~0.035 for CO, and
recent neutron-diffraction experiments by War-
kulwiz, Mozer, and Green' show that q = 0.11+, o,

'
for neon. These experiments make it impossible
to ignore any longer deviations from 0-Z be-
havior. Here we obtain a new expression for the
correlation function of the fluctuations in a fluid
at a temperature just above its critical tempera-
ture T, . Our procedure is to make use of the
spectral representation of the correlation func-
tion and some of its general features developed
in a previous paper' devoted to the screening ap-
proximation or so-called "n ' expansion. ""
Brayg has recently reviewed the status of the n '
expansion. It is clear that for n = 1, the case at
hand, we cannot use the n ' expansion explicitly,
but instead only as a source of ideas. We con-
struct a one-parameter phenomenological form

for the spectral weight which is positive definite,
has the correct threshold, and has an asymptotic
form consistent with Griffiths's theorem. " Then,
using this, we obtain an explicit one-parameter
expression for the correlation function. We con-
clude by comparing our form with the Fisher-
Burford approximant, obtained from numerical
studies of the three-dimensional Ising model. "

For T —T, & 0, the Fourier transform of the
correlation function, g, is finite for all real val-
ues of the wave number, or "momentum. " But
continued analytically in the complex momentum
plane, g has a pole at v —1 times the reciprocal
correlation length, or "mass. " (We will use the
field-theory analogy and particle language
throughout this paper. ) Farther out along the
negative momentum-squared axis there is a cut
which begins at the branch point corresponding
to the three-particle production threshold. It is
advantageous to work with g '(z), where z is the
momentum normalized such that the branch point
occurs at g = —1. This converts the pole at g
= ——,

' into a zero, which does not contribute to the
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