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surements is a strong confirmation of the theory.
The solid line in the figure shows that H~B~ is
nearly proportional to 1 —T/T, . We obtain a
similar temperature dependence by using expres-
sions for II~Rc involving other measured proper-
ties of superfluid B-He'.

In conclusion, we have shown that the orienta-
tion of B-He' in a parallel plate geometry is con-
sistent with the theoretical analysis of the sur-
face anisotropy in I, We have also found that a
careful analysis of the effects of bending in our
geometry is consistent with the earlier analysis
of NMR results in cylindrical geometries.
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For an electromagnetic wave obliquely incident on an inhomogeneous plasma, the dom-
inant instability at critical density is a radiating decay instability whose associated ion-
wave frequency, even in regimes where the growth rate greatly exceeds the real frequen-
cy, is approximately (A, DI.) c —= k~;„c . The stimulated radiation peaks between the
normal and backscatter angles and may be an important factor in explaining present ex-
periments. A nonlinear calculation at modest power shows that the nonlinear state in-
volves a large-amplitude ion wave through which the excited waves can compress the pump
wave.

An electromagnetic wave incident on a plasma
at an angle to the density gradient can be absorbed
resonantly by linear mode conversion into the
electron plasma wave if the incident wave is po-
larized in the plane of incidence. ' The stability
of the resulting field structure is of considerable
interest in laser-target experiments and micro-
wave-heating experiments. ' In fact, recently the
stability of such a structure has been examined
in a laboratory plasma. ' Thus far the only theo-
retical treatment of the problem has been within
the WEB approximation and the electrostatic lim-
it. Here we present a rather general analysis
where the pump wave is self-consistently ealeu-

lated and the excited waves are treated by the full
eleetromagnetie wave equations.

The field structure which forms after linear
mode conversion in a hot plasma is known and
has been described elsewhere. ' These are the
equations about which we want to make linear
perturbations.

For a hot-fluid plasma we combine the electron
momentum and continuity equations with Max-
well's equations, assuming an adiabatic pressure
law for the electrons and neglecting the ion mo-
tion on the high-frequency waves. We take elec-
tric fields and wave vectors of the incident and
unstable waves polarized in the x yplane (plane-
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of incidence) and consider a plasma density gra-
dient along x. The incident (pump) electromagnet-
ic wave of frequency m, is assumed to impinge on
the plasma profile at an angle 8-=sin '(k„/k) with
an electric field in vacuum varying as [xE„,(x, t)
+yE 0(x, t)] exp(ik, ey —i&sot).

The waves considered to be excited by the pump
are two high-frequency waves whose electric

fields vary as E, (x, t) exp[i(k, +k„)y+i~, t] and a
low-frequency ion wave whose density varies as
nl (x, t) exp(ik, y). For the ion wave we assume
quasineutrality, although we have solved the set
of equations described below without this assump-
tion with similar results.

The equations describing the high-frequency
electric fields of the linearly excited waves are
given by

c'[V'E' —V(V E')]+ 2i~, + [~,' —tv„']E'+v, ' 3V(V ~ E') V ~ E' " — & ~ 2O{E )
I 0 — 0

where V-x 8/Bx+yik, ', Z~, '-=re~, '/(1+iv, /&u, ), v, ' =v, '/(1+ i v&, /~, ), and where O(E, ) = E, for the plus
wave and O(E,) =ED for the minus wave. The damping v, is the usual collisional damping on the light
and plasma waves; vL, is an effective Landau damping which is put in the pressure term to preferen-
tially damp the electrostatic part of the high-frequency waves (see Forslund et al. , Ref. 1). v, =(T,/
m, )'~' is the electron thermal velocity, no(x) is the zero-order density, and k,'=k, +k». By standard
arguments the ion-wave equation is the usual ion-acoustic-wave equation with a V{E ) driving term:

'Ply 8'Qi Vno e
"st ' ~ ~n 2m ~c+2y —c ' V'n —V ~ n " = -- V ~ (n VE)

0 i 0

where

(2)

E= E, - E + —E,* ~ E, V -xB/Bx+yik, .

The equations for the pump wave are identical
in form to Eq. (1) for the plus wave except that
(A) the right-hand side is zero and 8/Bt - 0 if we
do not include feedback on the pump, or (B) the
right-hand side is replaced by an~, '(E *n~/no
+E+n„*/ne) and 8/Bt W 0 if we include feedback to
the pump. Additionally, there should be a depen-
dence of n, (x) on E, which arises because of the
secular change in the profile due to the zero-or-
der ponderomotive force. For simplicity it has
been neglected here. This general problem of
profile modification in light-wave absorption has
been treated elsewhere. ' Because of the impor-
tant results of a steepening of the density profile
at the critical surface (u, , =&@~,), we consider only
relatively steep density profiles.

If we Fourier analyze the ion wave in time, i.e. ,
let 8/Bt- —ie, then the plus and minus waves de-
scribed by Eq. (1) have frequencies ~+ ~,. The
linear system then consists of five coupled sec-
ond-order complex differential equations in x.
We numerically solve' these equations iteratively
determining the complex ~ which gives rise to
absolute instability, i.e. , lm(&u) &0.

For relatively sharp gradients, k,L ~ 25, we
have determined that the most unstable mode is
one in which near threshold the minus wave (which
is larger than the plus wave) is very similar in
structure to the pump wave. The ion wave has a
slightly shorter "wavelength" k-k;, =— (A D'L) '~~
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FIG. 1. The magnitude of the x electric field of
(a) the pump wave, (b) the minus wave, and (c) the
plus wave versus position in units of c/co{)', (d) the mag-
nitude of the pump E versus x; (e) the magnitude of
E versus x; (f) the magnitude of n& in units of the
critical density versus position. Electric fields are in
units eF/m &uoc. Parameters are vp/c =0.015, T /
m e =0.005, @pl. = o, M;/ = 00, T /T; » 1, sin&
=0.4, and g c/cup ——0. The density profile is a linear
density ramp with the critical density at x= 12.25c/
(up and 'pp =eEp/mg cup ~

with a frequency cu=k c, . It is tempting to
identify the instability as a decay type. In Fig. 1
we plot a typical solution for the magnitudes of
the pump and excited waves as a function of posi-
tion x. Figures 1(a) and 1(d) are the x and y com-
ponents of the pump electric field; Figs. 1(b) and
1(e) are the x and y components of the electric
field of the minus wave. Figure l(c) is the mag-
nitude of E„' as a function of x. The absolute
values of the excited waves are, of course, arbi-
trary in this eigenvalue problem; however, Fig.
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l(c) illustrates the point that the plus wave has a.

smaller relative amplitude because it is some-
what off resonance. In Fig. 1(f) we plot the mag-
nitude of the low fr-equency ion wave (normalized
to the critical density) as a function of x. For
this case Ip/&up= 0.018+ (0.011).

Note that the excited waves have a peak ampli-
tude at the Airy-function maximum of the pump
wave. The "wavelength" of the excited minus
wave is slightly shorter than that of the pump
wave which has a wavelength around the critical
density of )I. = 2II ()I n'L)"'. As one nears threshold
the "wavelength" or width of the excited minus
wave becomes nearly identical to that of the pump.
At higher powers this width of the most unstable
wave becomes even shorter as also does the width
of the ion wave which satisfies approximate k

matching. The large electromagnetic component
to the excited waves is seen in Fig. 1(e) by com-
paring the E field at the left boundary to the elec-
trostatic maximum which occurs just below criti-
cal density (which is at x =12.25c/Ip, ). At back-
scatter angles, i.e. , k, c /capp= 0.8, this electro-
magnetic component is even larger. In two-di-
mensional plasma simulations we have seen the
eigenfunctions which have been calculated here
over the k, range which we expect to be unstable.

An important issue is that of threshold. ~' Sim-
ple heuristic arguments from infinite homoge-
neous plasma theory, where growth rates balance
the damping v, ff due to convective loss of the
plasma wave [where v, &&--Ipp(Xn/L) "'], yield the
correct scaling on temperature and density grad-
ients. Noting that the maximum E„~(kpL) '~'

& (Lj)I.D)+'E „we find the threshold is given by
v, /v, & 5(k,L)'~')I.n/L. The numerical factor was
determined by an exact calculation of Eqs. (1)
and (2), assumed zero damping on the ion wave,
and assumed damping much less than v, ff on the
excited high-f requency waves.

In Fig. 2(a) we plot the real frequency (dashed
curve) and the growth rate (solid curve) of the
excited waves as a function of v, /c for the same
parameters as in Fig. 1. At high powers, i.e. ,

y &) v ff the growth rate appears to scale as E,
while near threshold it scales as E, . Addition-
ally, both the real frequency and growth rate ap-
pear to scale as (m, /M;)'~'. It is interesting that
for increasing power the real frequency drops
slightly although y»Re(cp). In Fig. 2(b), for the
parameters of Fig. 1 except v, /c =0.05, we plot
the growth rate (solid) and real frequency (dashed)
as a function of k, for the ion wave. The growth
rate for koL =2.5 is also given for comparison.
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FIG. 2. All parameters in (a)-(f) are the same as in
Fig. 1 unless otherwise specified. (a) Frequency
(dashed curve) and growth rate (solid curve) versus pp
=eE /0m uII. (b) Frequency (dashed curve) and growth
rate (solid curve) versus k~ of the ion wave for vo/c
=0.05. The lower solid curve is the growth rate for
koL=2.5. (c) Growth rate versus T /mc~ and koL for
vo/c = 0.05. For kDL = 2.5, sin(I = 0.4, and vo/c = 0.02,
the magnitude of E for the minus wave for {d) k~= 0,
(e) k~=0.4, and (f) k~=0.6. The absolute value of E
is arbitrary and the critical density is at x= 9.25c/uo.

Note that both maximize near the backscatter
angle, k, c/&, =0.8, but drop for increasing k, .
This is a behavior one might expect from an os-
cillating two-stream instability with finite fre-
quency due to finite-k driver, although the scal-
ing of Re(&p) with ion mass may not be expected.
Figure 2(c) is a plot of growth rate versus kpL
and T,/mc', sin8 is changed to keep the absorp-
tion at 40/p', vp/c =0.05 and other parameters not
varying are the same as in Fig. 1. For some re-
gime where y» v, f1, it appears that y ~Eg' /T,
approximately, although a simple power law
seems inappropriate.

In Figs. 2(d) —2(f), we plot the magnitude of E,
as a function of x for k, =0, 0.4, and 0.6, respec-
tively; v, /c =0.03, k,L=2.5, and sin() =0.4. The
important point to observe is the large radiation
out of the plasma, which peaks between an angle
normal to the target (ck,/I p=0. 4) and the back-
scatter angle (ck,/pp, = 0.8). For the parameter
range considered, this coupling to the electro-
magnetic field does not significantly affect the
growth rates and threshold conditions which are
basically electrostatic in origin, but does provide
an important external diagnostic. In two-dimen-
sional plasma simulations we have seen such
stimulated scattering which was first observed
by Biskamp and co-workers. %e believe that the
stimulated backscatter observed in experiments
may really be this decay instability of the reso-
nant absorption pump wave. Note that the thresh-
old in terms of external power is extremely low
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FIG B. The linear and nonlinear behavior of the instability with the parameters of Fig. 1 except that ay=0.8. At
the time t =400cuo in the linear regime the amplitudes versus position are E„of (a) the pump wave, (b) the minus
wave, and (c) nz of the ion wave. (d) The time history of the maximum E„ofthe pump wave (dashed) and the minus
wave (solid). At t =1200~p in the nonlinear regime the amplitudes versus position are E„of (e) the pump wave,
(f) the minus wave, and (g) nl of the ion wave. (h) The time history of the maximum nl of the ion wave.

in terms of present laser-target experiments.
We have also numerically solved Eqs. (1) and

(2) and the corresponding equation for the pump
wave in time and space by means of Laasonen dif-
ferencing and the usual Gaussian elimination pro-
cedure. The pump wave is turned on slowly,
reaches equilibrium, and then causes the plus
and minus waves to grow from noise with an as-
sociated growth of the low-frequency ion wave.
In the linear regime the growth rates, rea. l fre-
quency, and the eigenfunctions agree very well
with the stability calculation given above. For
parameters the same as in Fig. 1 but with k,
=0.8, the structure of the E„field of the pump
wave, the minus wave, and the density perturba-
tion of the ion wave are shown in the linear re-
gime at the time 400+0 ' in Figs. 3(a)—3(c). The
only noise used was an initially smooth ion den-
sity perturba. tion.

The importance of three different saturation
mechanisms have been considered. These are
pump depletion, nonlinear damping on the plasma
wave, and nonlinear damping on the ion wave.
Near threshold, pump depletion seems to domi-
nate. Somewhat above threshold the low-frequen-
cy density perturbation becomes as large as the
background and ion trapping should be important.
Only very strong plasma-wave damping, vL/u. ',
»n, /n, (where n, is the density perturbation of
the plasma wave), is able to stabilize the insta-
bility far above threshold. Mode coupling be-
tween many closely spaced k, modes may also
be an important stabilization mechanism not con-
sidered here.

In Fig. 3(d) we show the time history of the
maximum I'„ field of the pump wave and the mi-
nus wave for the problem cited above. Note the
exchange of energy between the pump and the ex-
cited wave after the initial saturation due to pump
depletion. From Fig. 3(h) we see that the maxi-
mum low-frequency ion-wave density saturates
at -0.1 to 0.3, small enough that ion trapping is
not significant. At higher power the saturated
value of n~ is larger. As the pump is depleted,
its shape is also distorted as shown in Fig. 3(e).
At this point it takes on the shape of the excited
wave shown in Fig. 3(f) which has a, slightly short-
er wavelength. One can view this as a local trap-
ping of the pump which is even more pronounced
at higher powers. The energy emitted by the mi-
nus wave saturates at about 5-10%%ug of the incident
pump energy. The total energy absorption after
saturation becomes an oscillatory function with
an amplitude of -10%%uo of the incident energy flux.
From Fig. 3(g) we see that the ion wave develops
secondary maxima which propagate down the den-
sity gradient.
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We investigate the turbulence excited by an ion beam in an unmagnetized plasma in con-
nection with the linear theory of the ion-beam-plasma instability, Depending on beam
velocity, one- or three-dimensional turbulence can be expected. These two types are
experimentally observed by looking at space correlation functions.

The turbulence generated by beam-plasma in-
teraction is known to diffuse particles in velocity
space. Among the processes by which such diffu-
sion occurs, theory' has pointed to the effect of
unstable electrostatic waves propagating off an-
gle from the beam velocity. Thus, whereas the
E field can only be axial in one-dimensiona. l (1D)
systems, it can be oblique in 3D plasmas. The
particle velocities are not only decelerated or ac-
celerated, but also deviated. ' This 3D effect has
an important bearing on the final state of the in-
teraction. ' The object of this paper is to present
a correlation method for measuring the structure
of this random E-field turbulence. We chose the
ion-beam-plasma system since its most unstable
modes are off axis, unlike with the electron
beam. Moreover, the occurrence of oblique prop-
agation in this type of turbulence was seen in nu-
merical results, 4 and observed in an experiment
in which discrete frequency components' were
cor r elated.

We first establish the 3D predictions of the lin-
ear theory of the ion-beam instability. ' Experi-
mental results obtained by correlation techniques
are reported, showing two types of turbulence:
plane 1D turbulence and 3D turbulence with oblique
E fields.

The 3D /ineax instability. —The 3D dispersion
relation for electrostatic waves in an unmagnet-

ized plasma ls w r1tt en

(d1+/ ', d'v(~ —k. v) 'k. '=0,

where the sum is over species s (electrons, plas-
ma ions, and beam ions) of distribution function

f, and plasma frequency u&, = (n, e'/e, m, )'".
The distributions are assumed Maxwellian. A

1D solution' to Eq. (1) depends on four parame-
ters: beam velocity V„rela.tive density, rela-
tive temperature, and plasma-ion-to-electron
temperature ratio. The 3D analysis introduces
two new parameters: the perpendicular tempera-
tures of the beam. and of the plasma ions. For-
tunately, the double-plasma-machine' method of
ion-beam formation provides a useful simplifica-
tion. The ions of the source plasma are assumed
to have the same density and temperature as the
plasma ions. Accelerating the source ions be-
tween two plane grids changes their parallel dis-
tribution into a positive tail of a truncated Max-
wellian, "with uniquely defined density, velocity,
and temperature, while the perpendicular tem-
perature is unchanged. The electron-to-plasma-
ion temperature ratio and the beam velocity are
the only parameters left. Once these are known,
Eq. (1) can be solved for each orientation (and
modulus) of k to give the frequency and growth
rate of unstable modes.


