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6In any actual system Eq. (2) would include a back-

ground term as well as the divergent term shown; this
would change the conclusions in the body of the paper
quantitatively but not qualitatively.
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Using third-sound resonance, we find for helium film thickness less than 2.8 atomic
layers that there exist excitations which are phononlike and two dimensional, obeying a
T law, that their areal density is independent of film thickness, and that their velocity
(using Landau theory) is 76+2 m/sec. This velocity is slightly above the maximum third-
sound velocity, 69 m/sec, that can be attained by 4He on argon. For thicker films the
areal density of these excitations becomes smaller.

A centra, l problem in the study of thin 4He films
is whether "two-dimensional superfluidity" is
simply a limiting case approached as film thick-
ness and hence T, vanish' or a domain of film
thickness with finite T,'s. ' Our interpretation of
measurements given below is that there does ex-
ist such a domain.

The measurements of Pobell et al.~ have dem-
onstrated that reducing the dimensionality by con-
fining helium in small pores has a profound ef-
fect on the magnitude and temperature dependence
of the excitation density. Using the Landau qua, si-
particle theory for reduced dimensions, Pad-
more and Haug' have provided a fra, mework to
understand this class of experiments. We believe
that the measurements presented below provide
an accurate cha, ra,cterization of these size effects
for two dimensions.

In the first part of the analysis we will charac-
terize our helium films by a superfluid film thick-
ness through an analysis similar to the work of
Scholtz, McLean, and Rudnick. ' Next, we will
ana, lyze the temperature dependence of the third-
sound velocities to produce an areal excitation
density. Finally we will try to fit these results
with the various Landau quasiparticle models.

Third-sound resonance" can produce mea, sure-
ments of third-sound velocity C with 1 part in 10'
resolution. Fortunately, for the films described
here, the linewidths are often less than 10 4 of
the resonant frequencies (which range from 400
to 1800 Hz). The resonator consists of two thin
sheets of quartz flame-sealed together. The sub-
strate is a 15-atomic-layer film of crystallized
argon which has sublimed just below liquid-nitro-

gen temperature, The argon gas is permanently
sealed within the quartz resonator, Any amount
of He may be diffused into the resonator at room
temperature with an 8-h time constant. Capaci-
tor plates within the resonator provide a means
of measuring the gas pressure, to a resolution
of 2 & 10 Torr, through the flexing of the reso-
nator walls. Total film thicknesses are estab-
lished by comparing the chemica, l potentials, as
measured by gas pressure, of various film thick-
nesses instead of by using the vapor pressure of
saturated He:

I" I'(d) 1 (d')
P d d"

P is the pressure well above a film of thickness
d and P' is the pressure well above a film of
thickness d'. In addition we use conservation of
atoms since we are dealing with a sealed system.
This method of analysis minimizes errors due to
temperature scale and pressure calibration. The
Van der Waals coefficient I"(0) has been calculat-
ed by Sabisky and Anderson' to be 14.5 K (atomic
layers)s for a helium film adsorbed on an argon
substrate. As the adsorbed film thickness in-
creases, I"(d) decreases slowly. These calcula-
tions have been checked against direct measure-
ments on CaF, substrates by Sabisky and Ander-
son.

Two-fluid hydrodynamics permits us to use
measured values of C to determine the density of
the excitations that comprise the normal part of
the fluid. The equation for velocity V of surface
waves of wavelength X on a liquid with surface

183



VOLUME )4, NUMBER 4 PHYSICAL REVIEW LETTERS 27 JANUARY 1975

tension tx and density p is

EA. 2mo 2~d

3—
—d
Ps
p f

0
5 6 73

d (atomic layers)
Di =1.30

FIG. 1. (p /p)d& is calculated from the third-sound
velocity C (extrapolated to T =0) from resonance mea-
surements. The helium film thickness d at T = 0 is
established from pressure measurements and the Van
der Waals constant of 14.5 K (atomic layers) given by
Sabisky and Anderson (Ref. 6). The solid line is drawn
at 45'. Because the experimental points lie close to
this line, the concept of an inert film thickness (the in-
tercept D~) and a superfluid film thickness (the remain-
der) can be used.

where I" is the force at the surface of the liquid
and d is the average depth of the liquid. In two-
fluid hydrodynamics' and for A. »d this result is
modified to

C' = [Skl'(d)/md~](p, /p) d, .

The term in square brackets is the Van der Waals
force, with k Boltzmann's constant and m the
mass of a 'He atom, (p, /p) is the superfluid frac-
tion, and ~, is the thickness of the superfluid part
of the film. Reference 6 chooses to include the
solid layer, d, , and the healing length, a, in the
film thickness over which the superfluid fraction
is averaged. Thus at T = 0 they find (p, /p) (1. In
fact, there is no clear basis upon which to sepa-
rate (p, /p) d, at low temperatures. In our case,
we choose (p, /p) =1 at T =0 which permits a di-
rect comparison of (p,) with the Landau quasi-
particle model. This choice fixes the "super-
fluid film thickness" d, at T =0. We have also
omitted from Eq. (3) their correction for com-
pressibility which has no significant effect on our
analysis.

Using our measurements of C extrapolated to
T =0 and Eq. (3), we obtain Fig. 1. If the inert

1 —C'(T )/C'(0) = p„ /p = oTs. (5)

Note that n depends on film thickness. In Fig. 3
we have plotted cv

' versus the total film thick-
ness. The result is a straight line with an inter-
cept D, =1.35 atomic layers. If we again associ-
ate the total film thickness less this intercept
with the thickness of the mobile part of the film,
we see that

D o: 1/di,

and we can rewrite (5) as

o„=p„d, ~ T'.

(6)

Thus the areal density of the excitations, 0„, is
independent of film thickness. The inverse of the
slope of the straight line in Fig. 3 gives an areal

layer of adsorbed helium (that portion not super-
fluid) is independent of film thickness, then the
points for various film thicknesses will fall on a
straight line at 45'. The thick-film deviations
can be explained by a 4% error in film thickness,
I' being 16% too small, or the thickness of the in-
ert layer increasing for thicker films. In fact,
we have some evidence in our pressure measure-
ments that there is a frozen layer of helium at
the substrate which increases in thickness for
thicker films. At 3.4+ 0.05 K an abrupt change
in the temperature dependence of the pressure
within the resonator may indicate the completion
of a solid layer. Note the intercept D, of 1.30
+ 0.05 atomic layers. Since the points fall close
to the 45' line in Fig. 1, we can establish', at
T =0 as the total film thickness less this inter-
cept. This intercept compares well with that ob-
tained by Scholtz, McLean, and Rudnick' of 1.47
atomic layers. In their case, with a more in-
tense Van der Waals attraction, a. thicker inert
layer should be expected. In this paper, as in
Ref. 6, there are no adjustable constants.

Because of the great resolution of the reso-
nance technique, we are able to examine the de-
tailed temperature dependence of third-sound
velocities. We can calculate how the density of
excitations p„depends on temperature, using
Eq. (3):

p. = pl 1 —C'(T)/C'(0)f,

where C(0) is the extrapolation of our measured
third-sound velocity to 7.

' =0 and p„=p —p, . The
result is close to a T' dependence of 1 —C'(T)/
C'(0) for each film thickness studied as shown in
Fig. 2.

We can summarize this result by writing
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FIG. 2. The quantity 1 —C'(T)/C'(0) corresponds to
the thermally excited normal fraction and is calculated
from resonance measurements with errors of less than
10 4. The T~ dependence indicates two-dimensional,
phononlike excitations. We can express this dependence
as 1—C (T)/C (0) =uT~ for each film thickness. The
brackets indicate the range of 0, used in Fig. B. Next
to the brackets are the corresponding helium film thick-
nesses in atomic layers. The thinnest film has the
maximum deviation from a T~ dependence of 10% in
the exponent if the portion between 0.85 and 0.7 K is
considered.

and

o„=(4.05+ 0.3)&&10 "g/cm' K',

which is independent of film thickness up to about
1.5 atomic layers of superfluid (or a total film
thickness of 2.8 atomic layers). N, is Avogadro's
number and M is the molar mass of He. For
thicker films (4.11 and 3.31 atomic layers in our
case), although a T' dependence of p„remains,
the magnitude of n drops precipitously and the
points fall well above the solid line and along the
dashed line in Fig. 3. This is in qualitative agree-
ment with Padmore's' comments on the effects
of dimensionality on the Landau quasiparticle den-
sity. For increased dimensionality one expects
decreased excitation density. A final experimen-
tal result we should mention comes from these
thicker films where we see spontaneous jumps

excitation density of

1o pA = ed, = 0.078+ 0.006T'p M

(atomic layers)/K', (8)

D~ =1.55

2
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FIG. B. The inverse of the average T~ coefficient o.
as determined from Fig. 2 versus total film thickness
in atomic layers. A straight line through the points in-
dicates an areal excitation density independent of film
thickness if film thickness is measured from the inter-
cept D&. Note that D, is close to D& (independently es-
tablished in Fig. 1). The dashed line is drawn through
points from thicker films not shown in the figure and
indicates the end of the domain of simple two dimen-
sionality.

in resonant frequency of as much as 0.2% from
time to time. %e conjecture that we have trapped
macroscopic vortices in these films which shift
the resonances through a, second-order Doppler
effect.

The contribution to the surface normal-fluid
density from thermally excited surfa. ce waves
may be calculated in the same way one calculates
the contribution to the bulk normal-fluid density
from phonons and rotons. " This has been done
by Kuper" for waves corresponding to the sec-
ond term in Eq. (2) (wavelength A. «d, the liquid
depth). The result is a T"' temperature depen-
dence of the areal excitation density. Padmore
has calculated 0„ for density waves with linear
dispersion in two dimensions (no free surface)
in the limit X «d and f inds a T' dependence:

o„=[3g(3)/2m](kT)'/k'C',

where f(3)=1.20, k is Boltzmann's constant, and
C is the velocity of the excitations. Although we
have a free surface, we expect the same result
in the long-wavelength limit as Padmore since
the first term in Eq. (2) gives a linear dispersion
and the second term becomes negligible in this
limit. We have calculated the Landau quasipar-
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ticle density in two dimensions using the com-
plete dispersion relation for surface waves [Eq.
(2)]. There are two temperature regimes for a.

given thickness, one corresponding to each term
in the dispersion relation, and in these two lim-
its our calculation agrees with those of Kuper
and Padmore. For all the film thicknesses and
temperatures realized in our experiments, this
calculation produces Kuper's T"' dependence as
opposed to the observed T' dependence.

We have considered only gapless excitations in
our calculation. Padmore" has done the Feyn-
man-Cohen roton calculation for rotons in two-
dimensional films and finds that the energy gap
is reduced 2 to 3 deg below that for bulk rotons.
However, we see no exponential contribution to
p„between 0.2 and 0.7 K for any of our films.

We are faced with two problems. One, what
sort of excitation produces the observed T tern-
perature dependence in the areal excitation den-
sity'P Two, why do we not see Kuper's surface-
wave excitations? The T' behavior clearly indi-
cates two-dimensiona, l, phononlike excitations.
In our case the natural velocity for these excita-
tions in the long-wavelength limit is the mea-
su'red third-sound velocity. However, this veloc-
ity depends strongly on film thickness [(Eq. (3)]
while the excitation velocity we obtain from our
measured values of o. and Eq. (9) (76+ 2 m/sec)
is nearly independent of film thickness.

The films seem to behave as though their sur-
face is rigid for short-wavelength (100 A) ther-
mal excitations while remaining mobile for the
much longer-wavelength (1 cm) third-sound
waves. If so, we must consider a two-dimension-
al phononlike excitation, perhaps a compression-

al wave between the surface and the substrate,
with a. velocity approximately 3 the first-sound
velocity for bulk liquid helium. This velocity is
also above the maximum third-sound velocity
which can be attained on argon. A partial answer
to these puzzles is that the excitation we are see-
ing might be nonhydrodynamic.
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Changes AC/C in sound velocity C in liquid helium-4 over the frequency range 1 to 15
MHz were studied as a function of temperature for 0.45- T = 0.1 K. The experimental
results are in qualitative agreement with predictions of positive phonon dispersion for
small momentum values.

Earlier experiments by Whitney and Chase, '
who measured the changes h, C in the velocity C
of sound in liquid He~, indicated that at frequen-

cies lower than 12 MHz, the velocity change b, C/
C as a function of temperature increases with in-
creasing frequency over the temperature range


