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difference between the Ps and Ps* binding ener-
gies.

At the present time, the search for a greater
Ps* formation effieieney with other target mate-
rials and methods of sample preparation is in
progress. A new target assembly incorporating
an rf cavity is being built to attempt a measure-
ment of the 2S-2P fine structure.

We thank professor H. Pendleton for valuable
comments, and are grateful to Professor
M. Deutseh for an illuminating discussion.

*Work supported by the National Science Foundation,
and the U. S. Army Research Office, Durham, N. C.

'M. Deutsch, Phys. Rev. 82, 455 (1951).
2H. W. Kendall, Ph. D. thesis, Massachusetts Institute

of Technology, 1954 (unpublished); V. W. Hughes,
J. Appl. Phys. 28, 16 (1957); R. L. Brock and J. R.
Streib, Phys. Rev. 109, 399 (1958); W. R. Bennett, Jr. ,

W. Thomas, V. W. Hughes, and C. S. Wu, Bull. Amer.
Phys. Soc. 6, 49 (1961); B. G. Duff and F. F. Heymann,
Proc. Roy. Soc., Ser. A 272, 363 (1963);"L.W. Fagg,
Nucl. Instrum. Methods 85, 53 {1970); 1VI. Leventhal,
Proc. Nat. Aead. Sci. 66, 6 (1970};S. M. Curry, Ph. D.
thesis, Stanford University, 1972 (unpublished); S. L.
Varghese, E. S. Ensberg, V, W. Hughes, and I. Lind-
gren, Phys, Lett. 49A, 415 (1974); S. L. McCall, Bull.
Amer. Phys. Soc. 18, 1512 (1973); J. F. Kielkopf and
P. J.Ouseph, Bull. Amer. Phys. Soc. 19, 592 (1974);
A. J.Dahm and T. G. Eck, Phys, Lett. 49A, 267 (1974).

T. Fulton and P. C. Martin, Phys. Rev. 95, 811
(1954}.

4K. F. Canter, A. P. Mills, Jr. , and S. Berko, Phys.
Rev. Lett. 33, 7 (1974).

Manufactured by Corion Corp. , Holliston, Mass.
6A. I. Alekseev, Zh. Eksp. Teor. Fix. 34, 1195 (1958),

and 36, 1839 (1959) ISov. Phys. JETP 7, 826 {1958),
and 9, 1312 (1959)j.

The statistically significant result reported by Kiel-
kopf and Ouseph (see Ref. 2) obtained with a fast P+
source has been reproduced using a p source (P. J.
Ouseph, private communication) .

Gravitationally Induced Density Gradients near the Liquid-Liquid Critical Solution Point~

Eric Dickinson, Charles M. Knobler, Verne N. Schumaker, and Robert L. Scott
Department of Chemistry, University of California, Los Angeles, California 90024

(Received 13 May 1974)

Analysis of sedimentation in a binary mixutre near a liquid-liquid critical solution
point shows that, as a result of the divergence of the sedimentation rate, a density in-
version occurs. At high gravitational fields (10 normal gravity) the inversion can oc-
cur as much as 1-3 K above I', . Turbulence associated with the inversion gives the
appearance of phase separation.

Recently there has been considerable interest
in the effect of concentration gradients upon ther-
modyna, mic and transport properties in the criti-
cal solution region. Of particular interest is the
rate at which gradients form.

Unfortunately there are no clear-cut experi-
ments concerning these gradients reported in the
literature. However, mea. surements of the effect
of a centrifugal field upon the upper critical solu-
tion temperature T, of binary mixtures which
were reported in 1954 by Hildebrand, Alder,
Beams, and Dixon' have bea.ring on this problem.
They studied two systems —(1) carbon tetrachlo-
ride+ perfluoromethylcyclohexane and (2) 2, 2, 3-
trimethylpentane+ perfluoro-n-heptane —and ob-
served in both eases that the apparent T, in-
creased linearly with centrifugal field. More-
over, after correction for, or the elimination
of, the contribution of hydrostatic pressure to a

change in T„syste m(2)—in which the densities
of the pure components differ by a factor of 2.5—was found to exhibit a residual increase in T,
(1.9 K at the highest fields), while system (1)—in which the ratio of the densities is only 1.1—showed no such effect, at least within an ex-
perimental uncertainty of not more than 0.2 K.
These results Hildebrand et al. attributed to
"sedimentation" of incipient clusters of markedly
different densities.

The equations of equilibrium thermodynamics
can describe the effect of gravitational or centri-
fugal fields on the equilibrium properties of criti-
cal systems, ' but they cannot account for these
results. A large difference in density between
the two components leads to a substantial con-
centration gradient in the system, as Fannin and
Knobler' have shown. The equilibrium critical
solution temperature T, depends upon the magni-
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tude of the graviational field only in the sense
that this determines the hydrostatic pressure p
at the position in the tube where the critical phe-
nomena occur.

Since it appeared impossible to account for the
1954 observations reported as equilibrium phe-
nomena, we turned to a consideration of the way
in which concentration gradients develop as a
function of time. This note reporte results of
some extensive numerical integrations of the
sedimentation equation and of an approximate
analytic solution. Details of the calculations will
be given elsewhere.

At any point in the real mixture, the mass flux
(in the direction of the field) of component 1 rela-
tive to the average mass velocity is given by'

71 22 'I[( ) 1/ xl)P, T 1

+ (7(', -M, /p)VP ],
where I is the Onsager phenomenological coeffi-
cient for diffusion; p„x„V'„and M, are the
chemical potential, molar volume, and molar
mass of component 1, respectively; and p is the
overall mass density. The first term in the
square brackets of Eq. (1) is proportional to a
flux due to concentration diffusion; the second
is proportional to a flux due to sedimentation
("pressure diffusion" ). At equilibrium the net
mass flow is zero and the two terms within
square brackets exactly cancel.

Under normal circumstances the coefficient L
is only weakly temperature dependent. However,
in the critical region the theory of dynamic scal-
ing requires that it diverge according to the
equation'

(2)

where I, is a constant and g is a critical expo-
nent. '

(B p, /Bx, )~ r vanishes at the critical point
with an exponent y= 1.2-1.3, but the product
L(B p, /Bx, )~ & vanishes with a much smaller ex-
ponent y* = 0.6-0.7. It follows then that (= 0.6-
0.7, and that L diverges at T,. Since in Eq. (1)
the sedimentation factor (7, -M, /p)&p is well
behaved at T„ the flux due to sedimentation be-
comes very large as the critical point is ap-
proached, in sharp contrast to the flux due to
concentration diffusion which tends to zero in the
same region.

For most binary mixtures, including the two in
question, dT, /dp is positive. Consequently, in
an isothermal system, the bottom of the tube is
closer to T, and the sedimentation flux is great-
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FIG. 1. Computer calculation of sedimentation at g
=10 m sec . The curves marked A, B, C, and D
represent gradients computed for times t =0, 10, 50,
and 100 sec, respectively. The temperature is 300 K,

0 56 ~f V2 =200 cm mol; ~~ = 144 g mol ', ~2
=388 g mol; L0=3.5&&10 mol cm sec. Because
of the hydrostatic head, &, varies from 296.8 K at the
top of the liquid to 299.4 K at the bottom. The density
inversion appears at 8 sec if (Bp/Bx)~ r/(Bp/Bp)„r
=3.4&& 103 atm.

est there. This leads to the unexpected, but in-
escapable, conclusion that there are intermedi-
ate layers in the system where the flux of the
denser component leaving through a lower bound-
ary plane exceeds the flux entering through the
upper boundary. This is confirmed by the com-
puter calculations in which Eq. (1) was numerical-
ly integrated over a series of fifty discrete layers
and over a series of short time intervals.

If one starts with a system in which the mole
fraction x, is uniform and equal to the critical
composition x, at all heights (i.e., no gravitation-
al field, &P =0) and then "turns on" a field or
pressure gradient, the large sedimentation fluxes
in the critical region quickly remove the denser
component from layers near the bottom of the
tube and produce reverse composition gradients
in the intermediate range of height (S-shaped
curves of x versus height), Fig. 1. Concentra-
tion inversions are not per se unstable, but den-
sity inversions are. The point at which these in-
stabilities, which produce turbulence and give
the appearance of phase separation, may occur
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in the actual system depends upon the compressi-
bility of the mixture. This density inversion is
inevitable when dT, /dp is large and when the
sedimentation is large by comparison with the
diffusion rate (i.e., when g is large and when the
system is near its critical solution point). Just
when and where it occurs will depend upon the
precise values of the parameters for a particular
system. If it occurs at all, it will occur where
the reverse slope dx/dh has its maximum value;
it is evident from Fig. 1 that this is near the bot-
tom of the tube.

Although Eq. (1) cannot be solved analytically,
a tractable relation can be obtained if several
approximations are made. Under conditions
where diffusion is negligible compared to sedi-
mentation, as at short times at temperatures
close to T, and compositions close to x„ the sub-
stitution of Eq. (2) into Eq. (1) yields a propor-
tionality between dx/dt and d'L/dh'. Integration
then yields an expression for the mole fraction
gradient at time t:

de
dh

' = —Cx, (V,p -M, )g(/+1)

[g(t)]'«
[(T T )/T ]2+g

where

Lo(x,M, + x2M2) & lnT,

(3)

(4)

(sp/sp). .r p~
dh (Bp/ax)~ r

The parameter C, indeed the entire factor pre-
ceding the integral in Eq. (3), depends only upon
nondivergent properties of the mixture and is
constant within a few percent over the range of
temperature, composition, and pressure of in-
terest to this problem. The acceleration of gravi-
ty g has been written as time dependent since the
rotor speed may be var ied during the experiment.

The condition for the onset of the density inver-
sion, dp/dh=0, leads to the equation

of g'dt.
In the usual experimental situation it is con-

venient to increase the rotor speed ~ linearly
with time; then, since g is proportional to co,

g = kt'. (6)

When, after substitution from Eq. (6), Eq. (3)
is integrated and combined with Eq. (5), we ob-
tain

Cx, (V, p ™,)(&p/Bx)» g(/+1)gz"
7p(&p/BP)„r k"

where gf is the (final) value of the gravitational
acceleration at which the density inversion ap-
pears, and T —7', is the increase over the ex-
pected (true) critical solution temperature. We
note that 2+/=2. 6, so Eq. (6) predicts that with-
in the usual experimental error a linear relation
between 1' —7'. , and g would be observed. This
conclusion is insensitive to the precise manner
in which g increases with time; it is not impor-
tant that Eq. (6) be exactly satisfied.

Equation (7) can be compared directly with the
experimental results of Hildebrand et al. ' who re-
ported the linear relation between the "critical
temperature" (in our model the inversion temper-
ature) and g. Moreover, when parameters ap-
propriate for the mixture i-C,H»+C„F„(sub-
stantially the same as those cited in the legend
for Fig. 1) are inserted into Eq. (7), a value of
7 —T,=1-2 K is obtained atg& ——10 m sec, a
value of the same order of magnitude as that
which they observed.

In our view the mechanism by which these con-
centration gradients develop and the unexpected
concentration inversions found should be general
features of mixtures in the critical solution re-
gion.

If diffusion is neglected, the maximum inverse
gradient dx/dh occurs at the bottom of the cell
where the hydrostatic pressure is greatest and

7, is closest to T. In general this 7, will be a
function of g and of the height l of the fluid, and

thus, if g varies, T, is a function of t. However,
in the limit that i is negligibly small (negligible
hydrostatic pressure), T, is independent of g and
integration in Eq. (3) reduces to the integration
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Using third-sound resonance, we find for helium film thickness less than 2.8 atomic
layers that there exist excitations which are phononlike and two dimensional, obeying a
T law, that their areal density is independent of film thickness, and that their velocity
(using Landau theory) is 76+2 m/sec. This velocity is slightly above the maximum third-
sound velocity, 69 m/sec, that can be attained by 4He on argon. For thicker films the
areal density of these excitations becomes smaller.

A centra, l problem in the study of thin 4He films
is whether "two-dimensional superfluidity" is
simply a limiting case approached as film thick-
ness and hence T, vanish' or a domain of film
thickness with finite T,'s. ' Our interpretation of
measurements given below is that there does ex-
ist such a domain.

The measurements of Pobell et al.~ have dem-
onstrated that reducing the dimensionality by con-
fining helium in small pores has a profound ef-
fect on the magnitude and temperature dependence
of the excitation density. Using the Landau qua, si-
particle theory for reduced dimensions, Pad-
more and Haug' have provided a fra, mework to
understand this class of experiments. We believe
that the measurements presented below provide
an accurate cha, ra,cterization of these size effects
for two dimensions.

In the first part of the analysis we will charac-
terize our helium films by a superfluid film thick-
ness through an analysis similar to the work of
Scholtz, McLean, and Rudnick. ' Next, we will
ana, lyze the temperature dependence of the third-
sound velocities to produce an areal excitation
density. Finally we will try to fit these results
with the various Landau quasiparticle models.

Third-sound resonance" can produce mea, sure-
ments of third-sound velocity C with 1 part in 10'
resolution. Fortunately, for the films described
here, the linewidths are often less than 10 4 of
the resonant frequencies (which range from 400
to 1800 Hz). The resonator consists of two thin
sheets of quartz flame-sealed together. The sub-
strate is a 15-atomic-layer film of crystallized
argon which has sublimed just below liquid-nitro-

gen temperature, The argon gas is permanently
sealed within the quartz resonator, Any amount
of He may be diffused into the resonator at room
temperature with an 8-h time constant. Capaci-
tor plates within the resonator provide a means
of measuring the gas pressure, to a resolution
of 2 & 10 Torr, through the flexing of the reso-
nator walls. Total film thicknesses are estab-
lished by comparing the chemica, l potentials, as
measured by gas pressure, of various film thick-
nesses instead of by using the vapor pressure of
saturated He:

I" I'(d) 1 (d')
P d d"

P is the pressure well above a film of thickness
d and P' is the pressure well above a film of
thickness d'. In addition we use conservation of
atoms since we are dealing with a sealed system.
This method of analysis minimizes errors due to
temperature scale and pressure calibration. The
Van der Waals coefficient I"(0) has been calculat-
ed by Sabisky and Anderson' to be 14.5 K (atomic
layers)s for a helium film adsorbed on an argon
substrate. As the adsorbed film thickness in-
creases, I"(d) decreases slowly. These calcula-
tions have been checked against direct measure-
ments on CaF, substrates by Sabisky and Ander-
son.

Two-fluid hydrodynamics permits us to use
measured values of C to determine the density of
the excitations that comprise the normal part of
the fluid. The equation for velocity V of surface
waves of wavelength X on a liquid with surface
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