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The continuous low-energy electron distributions emitted from K and L atomic shells in
a small fraction of ' Po e decays have been measured from 6 to 100 keV. The correspond-
ing complementary o. satellite continua have been measured. Electron and cv shapes agree
well, but disagree with all extant predictions. K and L emission probabilities were de-
termined. About 65% of the L (but very few of the K) electrons ejected are captured into
bound states of the z particle.

In n decay, deep core electrons may be ejected
from the atom, with very small probability. The
continuous energy distribution of the electrons
emitted from the i shell is expected to be concen-
trated near zero energy. The spectrum of the
associated n, with which the electron shares a
fixed total energy E,—B, (B, the i-shell binding
energy) is then a complementary mirror-image
satellite distribution below the main n peak (en-
ergy E,), with its upper threshold limit displaced
B, below E,. The ot decays of" Po" and "'Pu'
have been observed in surface-barrier spectrom-
eters, in coincidence with K or L x rays.

Several attempts' ' to calculate the probability
of ejection for the E, I-, and M shells in" Po
decay gave poor agreement' with the measured
intensities of associated x rays which signal a
core-vacancy creation. In a recent adaptation of
the binary-encounter approximation (BEA) with
zero impact parameter to this problem Hansen'
obtained fair agreement for X, L, and M ejec-
tion, but gave no prediction of spectrum shape.
All theories treat the ejection as arising from

direct Coulomb interaction between a relatively
slow n particle and a fast core electron but take
no account of quasimolecular energy-level shifts
as the e emerges. For E, L, or M electrons,
the n passage is essentially adiabatic, so elec-
tron shakeoff due to the relatively slow reduction
of the central field should play a minor role.

We have made the first reasonably precise
measurements of the K and I. ejected-electron
spectra in n decay, covering essentially the full
intensity of these emissions, from 6 to 100 keV.
Electrons from a fractional-monolayer 40- p.Ci
source of "~oPo formed by retarded ion-beam de-
position on a graphite film were observed over
60 days in an iron-free double-lens magnetic
spectrometer with an efficiency-calibrated NaI
scintillation detector, in coincidence with Pb K
or I.x rays detected in a Ge(Li) spectrometer
behind the source. Experimental details will be
published later.

The measured momentum spectra, transformed
to energy spectra, are given in Fig. 1. In the
energy range 6.2-10.4 keV, the K coincidence
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rates were determined using only the KP x rays
[multiplied by (Kn+KP)/KP =4.5], to suppress
coincidences between I- Auger-electron lines in
this range and Kn x rays which precede them. A
best fit through the K points below 20 keV sup-
ports the conclusion that K and L ejection shapes
are quite similar in this range. This similarity
in the region including the bulk of the intensity is
predicted in general binary-encounter theory"
belongs the energy T =4mE, /M, the maximum en-
ergy transferable in a collision between an im-
pinging particle, mass M, energy Ey alld a free
electron. However, for '"Po a' s, T =2,9 keV,
and above T, BEA calculations show a rapid

FIG. 1. Energy spectrum of ejected electrons as-
sociated with & decay of Po. & and denote elec-
trons in coincidence with K and L x rays, respectively.
K-shell ordinate values have been multiplied by 40, In-
sert shows that E and I spectrum shapes merge below

20 keU. Short-dashed curve, drawn to guide the eye,
extrapolated below 6 keU along locus which gives close
fit to observed spectrum shape of L;ejection-associated
z sateElite (see text and Fig. 2). Dotted curve shows E
data of Ovechkin and Tsenter (Ref. 10), matched to ours
at 30 keV. Curve from Migdal theory (- ~ -) for X-elec-
tron ejection is matched to our data at 35 keV, and high-
energy (»T ) asymptotic forms of binary encounter
approximation for K and L ejection are matched to our
results at T (=—2.9 keV).

divergence of the spectra of individual shells to-
ward an asymptotic dependence '" proportional
to (B, +E,) . Thus the observed agreement of
K and L, shapes to -7T disagrees with BEA the-
ory, as applied to ionic bombardment of atoms,
in the low-energy region. The high-energy BEA
asympotic forms shown ln Fig. 1 also grossly
disagree with the K and L shapes. These spec-
tral measurements are the first tests of BEA
predictions for individually identified shells.

Figure 1 also shows the Migdal prediction for
the K shell, normalized to the data point at 35
keV. Above 35 keV the agreement is fairly sat-
isfactory, but clearly not below, although Mig-
dal's prediction' for the K emission probability,
2.5x10 ' per e decay, is in fair agreement with
our and others' data, as is Hansen' s' value (see
Table I.) He gave no L-electron-spectrum shape
prediction.

We have also measured the K- and L-ejection-
associated e continuum satellites in '"Po, and
the L-associated n satellite of the ground-state-
feeding n group in" Pu decay. These were ob-
served from similar ion-beam-deposited thin
sources, in a high-resolution magnetic a spec-
trometer with a multielement focal-plane detec-
tor, in coincidence with K or I- x rays in a
NaI(Tl) spectrometer behind the source. An un-
fortunate accident disabled the spectrometer and
prevented the accumulation of enough data to de-
fine the K continuum shape with satisfactory sta-
tistical accuracy; it also degraded the sensitivity
of three detector elements on the low-energy tail
of the L,-associated satellite in "Po.

Figure 2 shows the" Po n-K and n-L continua,
and the (chance coincidence) a., line. At the left
is the L-elect on energy spectrum from Fig. 1
on a linear intensity scale. We assumed that this
measured shape is that of each of the L-subshell
components. By locating the zero energy edge
of the mirror images of these electron compo-
nents at the indicated L-subshell e-continuum
thresholds, and by letting both the relative sub-
shell intensities and the form of the extrapolation
of the L-electron shape below 6 keV (i.e., chan-
nel 2.4) be free parameters, the fit of the image-
sum convolution with the no line shape to the n-
L continuum was tested. The exhibited best fit
for L,:L,:I., =0.35:0.35:0.30 is only slightly bet-
ter than for that predicted by Hansen, ' L,:L,:I.,
=0.389:0.128:0.483. However, the quality of the
fitting was fairly sensitive to the form of the ex-
trapolation to zero of the I.-electron energy spec-
trum, and ruled out any upturn or downturn which
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Experimental and theoretical It, - and L-electron emission probabilities per 0 decay of 2'ppPo.

Re ference Experiment 6 6
PK (x10 ) PK ( theo-x10 ) Re ference Experiment P {x10 ) P (theo-x10 )

This work a) K X ray
singles 2.03+.13 Ref. 3 2. 5

This work d) L X ray
singles 8.2+0. 5 Ref. 3 1.13

b) Elect. -KX
col.n 2. 5+0.7

c) o.-KX coin. 2. 6+0. 5

Ref. 9 2. 02
e) Elec. -LX

coin.
f) n-LX coin.

3.05+0. 46 Ref. g 5. g
b

2. 83+0.45

Ref. 1
Ref. 2

Ref. 10

Ref. 12

Ref. 13

Ref. 14

b) /a)
c) /a)

n-KX coin.
n-KX coin.
K X singles
K X singles
K X singles
K X singles

Weighted average

l. 28+ 0.32

1.23+.26

2.0+0. 5

1.65+0.16
1.4+0. 4

2.1+0.4

1.4+0. 4

1.9+0.4

1.88+0.15

Ref. 1
Ref. 14

Ref. 15

Ref .
Ref. 17

Weighted

e) /d)
f) /d)

n-LX coin.
L X singles
L X singles
L X singles
L X singles

baverage

0.37+0.06

0. 33+0.06

8.6+2. 2

7.0+1.6

8.0+1.2

11.0
3.8+. 3

8. 1+0.5

Corrected for recent values of the intensity of the ~ branching to the 803-keV level in ~pb, 1.07 xl0 ~; for the
R'-conversion coefficient of the 803-keV F2 transition, 8.5 x10; and for the K-shell fluorescence yield, ~z ——0.968.

"P~ values e) and f) from this work excluded from average, Bef. 16 value assigned arbitrary error of +50%. Bef.
17 excluded from average.

L x-ray singles or LX-0. coincidence rates per 0. decay corrected by mean L-shell fluorescence yield, wz ——0.37.

External error = [g(x'I —x)2/n(n —1)II~2.
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FIG. 2. o,-satellite continuous energy spectra asso-
ciated with ejection of K and L electrons by the ground-
state {ep) decay of Po. e-K and z-L continua record-
ed in coincidence with% and Lx rays of Pb, G.p counts
arise from chance coincidences, K and L binding en-
ergy displacements from ep shown. Curve g near zero
energy is L-electron coincidence spectrum from Fig,
1; dashed part is extrapolated. Curve b is composite
of three mirror images of curve a with leading edges
at L~, L2, and L3, and with relative intensities 0,35,
0.35, and 0.30, respectively, convoluted with ep line
shape. Detector channels 464-466 failed during ex-
periment. Absolute channel numbers of o. continua are
arbitrary with respect to channels for electron spec-
trum g,

would change the area under the L spectrum from
that of Fig. 1 by more than + 5%. Thus for the L
spectrum the a and electron spectra supplement
each other in determining low- (& 6 keV) and high-
energy regions of the shape, respectively. To
provide the convenience of an analytic form for
the low end of the spectrum, we note that the ex-
trapolation form thus selected happens to match
the BEA K-shell (high-energy) asymptotic de-
pendence, proportional to (Bx+E~) '. A similar
extrapolation is used for the K shape to integrate
it. The excellence of the fit at the high-energy
side of the n-L continuum indicates that the
threshold displacements agree with the (Z —2;
i.e., Pb) subshell binding energies to +1 keV.
For the spoiled e-K experiment the limit is +2
keV.

In Table I are listed the K and I ejection prob-
abilities per n decay of "'Po, each derived from
three measurements: the K and L x-ray singles
intensities in the Ge(Li) spectrometer, the IL- and
L-electron coincidence spectrum integrals, and
the K and L n-satellite coincidence spectrum
integrals. The values are corrected for fluores-
cence yields and all apparatus parameters. The
table also gives all published values" "and Han-
sen's' and Migdal's' predictions. Our K- and L-
x-ray singles data and our K-electron coinci-
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dence and K-n-satellite coincidence data are all
in satisfactory accord with other data and with
Hansen's values. However, both the L-electron
and L-n-satellite coincidence values show only
about 35/0 of the number of coincidences calcu-
lated from the observed L x-ray intensity even
though they were measured simultaneously with
the K coincidence (and K and I. singles) mea-
surements in both n and electron spectrometers.
No apparatus defect such as coincidence ineffi-
ciency (measured to few percent accuracy) ac-
counts for these nearly 'matching disparities in
the L-e and L-n cases.

We believe this strongly suggests that in -65%
of the o.-I--electron-ejection interactions in
' Po the electron is captured into a He++ bound

state (-50%%uq for "'Pu). In such events neither
the He+ nor the electron would be detectable in
either of the magnetic spectrometers (Bp for He'
is beyond our spectrometer range), though the
solid-state u detectors of Refs. 1 and 2 would
respond indistinguishably to He' or He" and thus
give I'~ values consistent with L-x-ray singles
data.

Halpern and Law" proposed E charge exchange
into bound states of fully stripped projectiles to
account for anomalously high x-ray yields (»
~Z') in light ion (C",N", 0", and F")bom-
bardment of argon by Macdonald, Winters, and
Brown. " They use a modified Brinkman-Kra-
mers (BK) formulation of the K charge-exchange
cross section, which depends sensitively and
reasonantly on - (v/u~)'(1+v/u~) ", with v the
projectile velocity and u~ the initial bound-state
E-orbital electron velocity. For '"Po this o,K
is only 1.1&10 ' cm for K electrons, compared
to our estimate of 0 for E ejection of 10 "cm,
given by P~&a „ for the K shell. This implies
negligible K charge transfer to the n, as we ob-
serve. Extending this argument to the L-shell
case indicates a probably unfavorable prediction
for copious L charge exchange, unless the BK
L-shell formula shows an even steeper depen-

dence on v/u~.
The spectrum shape disparities and the strong

L-electron "pickup" suggests that theory must
treat the continuously changing composite e-Pb
level structure, and the desirability of ejected-
electron spectrometry in current vacancy crea-
tion via ion bombardment studies.

*Work performed under the auspices of the U. S. Atom-
ic Energy Commission,

)Summer staff participant from University of Okla-
homa.
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