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The picture that charmed quarks are interacting with each other through a linear po-
tential is used to analyze the particle spectrum in the high-energy annihilation process
e+e hadrons. With the newly found resonances at 3.1 and 3.7 GeV as input, we pre-
dict other resonances (in particular, one at approximately 4.0 GeV) and determine the
hadronic width of the 3.1 and leptonic widths of the 3.1 and 3.7 resonances. Extending
the linear potential to quarks without charm enables us to predict the charmed-particle
threshold to be approximately 5 GeV.

Recent experiments concerning e'e - hadrons
are providing a particularly instructive probe of
hadronic structure and dynamics. ' Especially
interesting are the newly discovered narrow res-
onances at 3.1 and 3.7 GeV. ' It has been argued'
that the 3.1-GeV state is a '$y mesonic bound
state of charmed' quarks, named "orthocharmo-
nium. "' We speculate that the 3.7-GeV state is
a radial excitation of orthocharmonium and is
only the first of a new spectrum of charmonium
states. '

Explicitly, we study a quark system with exact
gauge symmetry [e.g. , color SV(3)] in which as-
ymptotic freedom is realized in the short-dis-
tance limit, as in the scaling region of deep in-
elastic scattering. ' In accordance with infra-
red slavery, ' the gauge coupling grows with the
quark separation, bring us into the domain de-
scribed by a strong-coupling theory. Here, we

'use Schwinger" and Wilson" as guides and pic-
ture the quarks as confined by a flux of a gauge
field, which leads to a linearly rising energy be-
tween the quarks.

These ideas are applied to e'e —hadrons by

considering the fate of the colored quark and anti-
quark produced from the single-photon remnant
of the e'e annihilation. Initially, the quark (q)
and antiquark (q) recede from each other almost
freely, in accord with the ideas of asymptotic
freedom. However, as the separation increases,
a linear potential emerges and dominates. Now
if the quarks do not fall into an energy eigenstate
of the linear potential, they undergo a brems-
strahlung-type radiation with soft gauge photons
(massless vector gluons). These gauge photons
create a shower of quark pairs which form the
final-state hadrons, as in the quark-parton ex-
planation of scaling. But, if the quark energy co-
incides with an energy eigenvalue of the linear
potential, then the quark is prohibited from pro-
ducing the bremsstrahlung radiation and a bound
state is formed. Since the q'q bound state is
formed through a single-photon channel (Z~c
= I ), it must be a, spin triplet, which we call
orthocharmonium. ' We assume that insofar as
the quarks are in an energy eigenstate, their
lifetime is sufficiently long so that their states
are completely characterized by a linear poten-
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tial. In addition, a single-particle wave-function
description should be adequate, for the bound
states are free from the bremsstrahlung type of
pair creation. As in the usual quark bound-state
calculations, "we use the nonrelativistic Schro-
dinger equation, and, where meaningful, we will
determine the relativistic corrections. In the
center-of-mass system of qq, the equation for
the radial wave function is

1 1 d' l(l +1),r+, + (Kr —E)

I(n) 2~&~ + (K2/~& )1/3g (2)

where —a„ is the nth zero of the Airy function
Ai(x) on the negative real axis. Since we have
two parameters m and K, we need two inputs,
which we take as M "=3.105 GeV and M ' =3.695
GeV. ' Using this, we find m~. =1.16 GeV while K
=0.211 GeV'. It is interesting to note that a simi-
lar mass for a charmed quark was considered by
De Rujula and Glashow' using a different approach.

Now that all parameters are determined, we
can calculate the higher resonance states (see
Table I). Indeed, the strongest prediction of the
linear potential model is the existence of resp-
nances beyond 4 GeV. This is in contrast to the

TABLE I. Charmonium spectrum. Total energy && ",
with relativistic corrections ~,~&~"), and mean radius
6„)as determined from the n zeros of the Airy func-
tion at -&„.

M(n)

(GeV)
~re~ (n)

(GeV~
(r„&

&GeV-')

2,338
4.088
5,521
6.787
7,944

3.105~
3 695a
4.18
4.61
5.00

—0.027
—0.082
—0.15
—0.28
—0.31

2.5
4 4
5.9
7.2
8.5

x R(~) = 0, (1)

where the potential is taken as V(x) =Km, K being
a constant, and m~. is the mass of the charmed
quark.

The qq system produced through a single-pho-
ton channel can have only / =0, 2 in a spin triplet
configuration. For /=0, Eq. (1) can be exactly
solved and the energy eigenvalues are determined
by the zerps pf the Airy function, "which, when
added to the quark rest mass, give the masses of
the bound states I'"':

16m n
l 9 (4)

where a =1/137. The predicted leptonic decay
width is I, -4.3 keV. In contrast, the Coulomb
result with the same parameters is 0.4 keV& I',
&1.3 keV for 0.2&o.~&0.3. The linear-potential
predictions for the hadronic and leptonic decay
widths are in agreement with the preliminary ex-
perimental estimates. "

The predicted leptonic decay width can be used
to determine the area under the resonance peak
in a graph of the cross section versus energy
(c.m. ). We use

ger, ,, -
y

dE =(6&'/I "')I', (6)

to predict that the area under the 3.1-GeV reso-
nance is 10.3 nb GeV while that under the 3.7-
GeV resonance is 7.3 nb GeV. A preliminary es-
timate" of the area under the first resonance is

Coulomb potential where, if the first two energy
eigenstates are at 3.1 and 3.7 GeV, the continuum
will begin at 3.9 GeV. In addition, the rather
large values of the mean radius (x) would seem
to argue against the dominance of the Coulomb
potential, particularly for the excited states.
Relativistic corrections do not vitiate these re-
sults.

The hadrpnic decay rate of orthocharmonium
can be calculated by considering the dominant
annihilation channel of qq -3y, where y is a vec-
tor gluon. The annihilation process takes place
essentially in an asymptotically free region, so
that we have for the hadronic width of the 1'S,
state'

I „(3.1) = [,]['g'(m' —9)n, '/mp'][nap. K/4m], (3)

where the, is a group multiplicity factor for col-
or SU(3), the second factor is identical in form
to the orthopositronium result, "and the last fac-
tor is the square of the linear potential wave
function at the origin. With the gauge coupling
in the range" 0.2 & n~ & 0.3, we predict that 50
keV& I'„(3.l) &160 keV. With the same parame-
ters, the Coulomb potential would lead to 8 keV
& I'„"'(3.1) & 92 keV.

A striking property of the wave function for a
linear potential is that it is independent of n at
the origin. Thus, the hadronic decay width of
orthocharmonium serves as a strict lower bound
on the decay widths of the excited states. The
leptonic decay width of any of the n'S, states will
be given by the contribution from the annihilation
into a single photon":
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FIG. 1. Potential P' as a function of distance g for
different total center-of-mass energies.

9 nb GeV.
The procedure to determine the positions and

widths of resonances in a linear potential can be
used to analyze the spectrum produced by the
other quarks, namely the 6' (or X) and the A. .
Confining ourselves to the mesons with the same
quantum number as orthocharmonium restricts
our interest to the v and y trajectories, and in
particular M ' =0.784 GeV, M =1.664 GeV,
and M~'" =1.0196 GeV. Since these mass values
are somewhat smaller than the charmonium
masses, we encounter two difficulties. First,
the relativistic corrections may become signifi-
cant, for the binding energies are comparable to
those in charmonium but the noncharmed quark
masses are smaller. We choose not to forsake
the nonrelativistic Schrodinger equation but to
consider these relativistic effects further in a
future publication. A second difficulty is that we
no longer expect the Coulomb potential to be neg-
ligible. The physical reason for this can be seen
by referring to Fig. 1. As the energy v S of the
system of qq decreases, the Coulomb coupling,
o. (v S), increases in accord with asymptotic free-
dom. This implies that the short-distance Cou-
lomb part of the potential becomes less steep.
But, if we assume that the linear potential is a
smooth outgrowth of the Coulomb potential, then

V, must become more and more negative as v S
decreases. Thus, we modify the linear potential
to read V(r) = V, +Kr, and Vo will depend on the
energy of the ground state of qq.

For the ~ system, using M ' and M„', we
find that m~—- 0.35 GeV and (V,) = —1.1 GeV.

The next eigenvalue leads to M„~' =2.38 GeV.
Knowing the light quark mass mz allows us to
predict the threshold for the production of charmed
particles to be -5 GeV. The value of (V,) „allows
us to estimate (V,) ~ (see Fig. 1) for which only
M„(') is definitely known. Using (V„)~= —1.0 GeV
we find mz =0.47 GeV whileM~ ' =1.8 GeV. Us-
ing (V,) ~= —0.9 GeV we find m~=0. 40 GeV while
~ (2) ] 9GeV

Work is now in progress concerning the decay
widths of excited states, the hyperfine splitting
of orthocharmonium and paracharmonium, as
well as other properties of paracharmonium, and
the l c 0 situation.
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The ~-expansion formula for the critical exponent p derived by Shukla and Green from
Wilson's exact renormalization-group equation is found to yield the standard result p
=~5e +O(e ), independent of the choice of the incomplete-integration function. The result
is obtained analytically in the limit a ~ and numerically for arbitrary a, where a de-
notes the normalization constant of the Gaussian fixed-point functional.

Shukla and Green' have studied Wilson's exact
renormal~zation-group equation' by using the r-
expansion technique about d = 4 dimensions. The
authors found an expression for the critical ex-
ponent g which, they conclude, may violate the
universality hypothesis, since it apparently de-
pends on redundant parameters' of the calcula-
tion. Here we show that their result for g in fact
is a universal quantity independent of redundant
parameters and equal to the standard result for
the continuous-spin Ising model, 7)

=
—,',e'+ O(e')."

Shukla and Green's p expansion starts from
Eq. (11.17) of Ref. 2. If we choose their incom-
plete-integration cutoff function P(k) to have the
general form

P(k) =ck",

then, at the Gaussian fixed point, u20* becomes

u„*(k)= ak'
ak'+ exp [- (2c /n)k" ] ' (2)

kn exp[ (2c/n)k ]
fak'+ exp[- (2c /n)k "]j"

g(k) = 2~fak'+ exp[- (2c/n)k"]) ',

A = /Sam'.

(3)

where a is the arbitrary kinetic energy normaliza-
tion. The quantities 4'(k), g(k), and A defined in
Shukla and Green's Letter' then become

Introducing the functions

G(k) = 2 fd'q q(q)g(~k+ q ~)

and

(7)

we obtain for the coefficient of the e' term in the
expression of the critical exponent g, g =g,e'
+ O(e'),

(8)

where H" (0) = [d'H(k)/dk']„, . The question is
whether the apparent dependence of this result
on the normalization parameter a and the cutoff
function p(k) is a spurious one.

The discussion is based on the expression for
H" (0) below, obtained from Eq. (7) by performing
the differentiation with respect to k and the inte-
gration over the angular variables:

H" (0) = —n' f dq q'('(q) [G(q) —G(0)].

With transformation to the variable x= aq', the
substitutions

g'(x) = f'( )dxx/dq, G(q) = (w'/2a')G(x), (10)

with G(0) = 1 [by definition G(0) =-', A-'],
partial integration of the G(0) term, Eqs. (5), (8),
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