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We present an analytic solution for Raman backscatter in a cold homogeneous plasma,
valid until saturation by breaking of the longitudinal waves, or by self-consistent deple-
tion of the pump. We give quantitative values for the pump strength necessary for the
former to occur first, and the transmission at saturation. Nonlinear particle bunching
causes growth of electromagnetic sidebands. In quarter-critical plasma, a sideband at

I(op reaches 8/o of the pump intensity at wave breaking'

Two phenomena of the radiation-plasma inter-
action, beat heating' ' and the stimulated-Raman-
scattering (SRS)' ' instability, are based on reso-
nant excitation of a longitudinal electron mode by
the beat between two electromagnetic waves.
When the cold-plasma approximation'"'" is val-
id, i.e., when the thermal velocity of an electron
is smaller than its directed velocity, the excited
longitudinal modes are resonant plasma oscilla-
tions. " Using Z.agrangian methods, ""we can
then follow the course of these phenomena analyt-
ically until wave breaking" occurs, thus exposing
the physics directly. The analysis fails at that
point, but cold-plasma computer simulations'
show that growth of SRS stops when the longitudi-
nal waves break. Thus, the analysis is valid un-
til saturation begins.

Here we report some results of a study of Ra-
man backscatter in a cold, infinite homogeneous

plasma. The physical system is shown in Fig. 1:
Two counterpropagating electromagnetic waves,
one a high-intensity pump at frequency &u, [Fig.
1(a)], the other a reflected wave at frequency
ru, —v~, growing from the noise [ Fig. 1(b)], beat,
thus exciting, via Vx B forces in the longitudinal
direction [Fig. 1(c)], a resonant oscillation in the
ambient plasma. In the course of this oscillation,
the electrons undergo a density perturbation 4n,
while at the same time they quiver transversely
(with velocity v) in the electric field of the elec-
tromagnetic waves. The phase of the resulting
incremental current —ev4n is such that it reso-
nantly adds energy to the reflected wave at the
expense of the pump wave. ' As the amplitude of
the plasma oscillation increases, the dersity per-
turbations steepen nonlinearly [ Fig. 1(d)] and the
incremental number density contains growing
components at all the harmonics of the beat wave.
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FIG. 1. The major waves present in stimulated Raman backscatter: (a) pump wave and (b) reflected wave quiver
velocities (not to scale); (c) the longitudinal resonant Vx B force due to the beat wave; (d) the incremental number
density in the nonlinear plasma oscillation (the bunched electrons move transversely with V); (e) the first upper
and (f) the first lower sidebands for &vo»&o& (at quarter-critical density the lower sidebands have zero or positive
phase velocity) .

The associated incremental currents then feed
energy into electromagnetic sidebands which are
separated from each other, and from the incident
and scattered waves, by multiples of the beat
wave number and the plasma frequency [ Figs.
1(e) and l(f)].

Interest in SRS has largely centered on the ab-
solute instability" at its upper density limit
(quarter-critical density v~= —,'~, ) in inhomoge-
neous plasma. " It is recognized that the dynam-
ics of quarter-critical plasma is significant to
laser-pellet fusion because large ion disturbanc-
es, affecting the blowoff of the underdense plas-
ma, occur there. " At quarter-critical density,
SRS competes with an absorptive instability, two-
plasmon decay. ' If planned measurements of the
scattered radiation at —,'co, and &~, in future pel-
let-irradiation experiments" are to be used in
determining the winner of this competition, the
radiation at these frequencies generated by each
of these mechanisms must be predicted. A re-
cent computer simulation by Biskamp and Welter'
shows radiation reflected and transmitted in lines

at multiples of &coo, due to SRS in underdense in-
homogeneous plasma.

In the present analytical study of SRS in homog-
eneous plasma, we show that these anti-Stokes
lines or sidebands are caused by nonlinear steep-
ening of the resonant electron-plasma oscilla-
tions. We give a quantitative estimate of their
intensity which is in fair agreement with numeri-
cal results for inhomogeneous plasma. ' The
methods used here yield physical and analytic in-
sights necessary to the solution of the inhomoge-
neous problem. From the theoretical point of
view, it is most interesting that the plasma os-
cillation can be described by a Lagrangian equa-
tion (in terms of i and initial particle position xo)
and the electromagnetic waves by an Eulerian
equation (in terms of t and x), both of which have
linear kernels, and that the exact solution of
these equations differs from a linear solution (in
which no distinction is made between x and xo as
indePendent variables) by at most 12% at wave
breaking. Dephasing terms, such as the relativ-
istic corrections found by Rosenbluth and Liu'
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for the case of beat heating by co-propagating
electromagnetic waves, or corrections due to
transfer of energy to nonresonant modes (e.g.,
to the sidebands) do not have significant effect in
the present case. The details of the calculation
leading to this negative conclusion will be pre-
sented in a more complete paper.

Growth of the instability proceeds at approxi-
mately the linear rate until wave breaking, pro-
vided the pump wave (which we treat self-consis-
tently) is intense enough. We calculate the mini-
mum pump strength necessary for saturation to
occur through wave breaking rather than pump
depletion, and the associated pump transmission
in the strong-pump case. The zero-order solu-
tion which gives these results can be used to ob-
tain expressions for the amplitudes of the anti-
Stokes lines. In homogeneous plasma these are
"near" electromagnetic fields:heir frequencies
and wave numbers do not satisfy the dispersion
relation for electromagnetic radiation. They can
be expected to couple to both transmitted and re-
flected radiation in inhomogeneous plasma. ' We
find that the most intense sideband is one at fre-
quency 2v, which occurs in quarter-critical plas-
ma. This near field has positive phase velocity
and must thus be co~pared with the first trans-
mitted line of Ref. 9.

1

Although the electrons move both longitudinally

(B /BP+ (g)p —c B /Bx )v = (op v Ã/Bxy (2)

where the right-hand side is the incremental
electron current —evhn, . To obtain the term in
this form we have used the continuity equation
n, Bx/Bx, =N, where N is the fixed background
ion density, or~'=4mNe'/m. The time derivative
here is Eulerian (at constant x).

Raman backscatter can be represented by taking
the resonant parts v to be of the form

and transversely, the backscatter problem is es-
sentially one-dimensional since the fields and
plasma properties vary only in the direction of
propagation of the electromagnetic wave (the x
direction). The longitudinal force due to the elec-
tromagnetic waves is (Vx8}„;using v =ed/mc,
where v is the transverse electron velocity and
A. the vector potential, we can write the equation
governing the cold-plasma oscillations' as

5+~~'5 = —v Bv/Bx.

Here 5(x„t) = x- x, is the displacement of a par-
ticle from its equilibrium position (x,) and the
time derivative is Lagrangian (at constant x,).
Equation (1) holds for inhomogeneous plasma,
provided the displacement is small compared
with the scale length. In the homogeneous limit
considered here the scale length is taken to be
infinite. The electromagnetic wave obeys

,'[V,T(t) ex—p(ik,x - is&,t) +v, It (t) exp(ik, x+ &u,t}+c.c.],
where ur, =~, —~~, v, «V„(k„~,} and (k„~,}
satisfy '=co '+c'k', and R and T are slowly
varying functions of time over a plasma period.
The resonant part of the driver in Eq. (1) is then
proportional to exp(iA), where X =kx —cv~t =kx,
—cu&t+k6 and k =ko+k, . The nonlinear occurence
of the unknown 6 in the driving term' results,
even for IkBI=1, in small corrections (of order
y/&u~ where y is the linear growth rate) to the si-
nusoidal variation 5~exp(ik, ), where A.,=kx,
—~~t. These corrections are among the dephas-
ing terms mentioned above; they have no appreci-
able effect on the growth.

To zero order, i.e., ignoring all dephasing
terms, k 5 has the form'

k6=D(t) cos[X, + y(t)].

The condition for wave breaking, 1B5/Bx,
1
=1, is

equivalent to D = l. In Fig. 1(d), we plot the elec-
tron density n =N(1 —M/Bx), at wave breaking,

as it appears in Eulerian coordinates, in the
beat-wave frame. It is periodic in A. but not sinu-
soidal; thus B5/Bx contains all the harmonics of
the beat wave:

Bo/Bx =gimE (t) exp(imX) +c.c. (4)
1

The Fourier coefficients, E =(2w) 'pe. k5
xexp(- imA), can be found to zero order from Eq.
(3}, Bessel's identity

exp(iu sin8) =QJ,(o') exp(i@8),

and the relation dA. /dA. , = 1+dk 5/dA. , (k5 is period-
ic in both X and A., since the points k5= 0, respec-
tively, coincide). The result is

F„=(-i)" 'n 'J„(nD) exp(in').

It is the fundamental, E„ that beats with the
pump to cause growth of the reQected wave and
beats with the latter to cause depletion of the
pump. ' The components with m g1 beat with both
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(7)

(6)

(9)

electromagnetic waves to produce the sidebands.
Equations (2) and (4) imply that v must have the form

V= —,'(Q V„(t) exp(i[(ko+nk)x —(ooo+n&u~)t])+c. c.],
~e QQ

where the V„are complex. To distinguish the electromagnetic waves we shall continue to write V,T in
place of V, and voR* in place of V,. For n = 0 and —1, we obtain from Eqs. (2) and (7) the slow-time
behavior of T and R:

where

c=ak'(up 'eoVo y=~kVo((up/u2) ~ p =~o~o "o Vo

The electromagnetic waves have the exact first integral, expressing conservation of action, '

7'+ p.2p2=1+ p.
2

(io)

where v and p are the magnitudes of T and R, respectively, assumed to be 1 at t = 0.
Of the quadratic terms obtained from substitution of Eq. (7) on the right-hand side of Eq. (1) for the

longitudinal displacement, only the resonant driver need be kept to zero order. Following Rosenbluth
and Liu, ' we convert this from a series in kx to one in kx, using Eq. (5). Then

(D+iDy) = e~~[RTJ,(D) exp(- iy) +R*T*J,(D) exp(iy)]

Equations (6), (8), (9), and (12) reduce to

2~ 2p2 g2~ 2+, y2D2

D2 4J' 2(D)D 2(~2+ 2+y2D2)(1 p2y2D2/~2+ 2)

(12)

(14)

where we have assumed no electrostatic noise
(D=O) at t=0. A small-D expansion of Eq. (14)
recovers the linear result D ~ sinh(yt) so that
2J,(1)-0.88 is a measure of the decrease in the
growth rate at wavebreaking (D= 1) compared with
the linear rate. The last factor in Eq. (14) is the
pump strength 7' Growth . continues up to wave
breaking without pump depletion provided ceo~

&p.y, i.e.,

V,/c) ~ 312~ u'(ck) ',

and the transmission is then

r '=(1- co~'/vP'V ') (i6)

This implies that an incident pump with V,/c
&0.5(~~/~o)"' will not be transmitted through a
plasma with v~ «e„and similarly for V,/c & 6 '~'

-0.4 through a quarter-critical plasma. Numeri-
cal results' show an incident intensity correspond-
ing to Vo/c -0.1 to be depleted by 60%%uo in passing
through inhomogeneous plasma with density up to
-0.6 critical. The discrepancy is likely to be due
to the difference between homogeneous and inho-
mogeneous plasma.

The sideband amplitudes (V„, n c0 or —1) can
be found from Eqs. (2), (4), (6), (7), and (9). The

V„=—,'iv[(n+1) 'VoTE„+n 'voR*I'„„],

n~o, —1.
(17)

Since transverse velocity is proportional to vec-
tor potential, a field V with frequency ~ and wave
number k has intensity relative to the self consis-
tent value of the pump field eklV I'/cuPoVo'iT['. lf
there is no dephasing, we can set R =yR in Eq.
(9). Then at quarter-critical density (v = 1), the
first upper sideband V, (u& = 2&so, k = 2k,—the first
transmitted anti-Stokes line of Ref. 9) has rela-
tive intensity

Io(2 ——4J,2(1)[~ + 2J22(2}(1—v2}], (is)

where 7 is the transmission at wave breaking.
This expression is valid in the strong-pump lim-

L left-hand side of Eq. (2), after substitution of Eq.
(7), is of the form n(n+1)A'V„, where 0'=c'kok,
+~,~, —~~' ~ co~'. Because the right-hand side of
Eq. (2) is proportional to e~', the sideband ampli-
tudes are proportional to the small parameter v

= &u~'/0'- 1 (numerical factors insure that the
sideband amplitudes are small even at quarter-
critical density where v =1). To first order in v,
we find
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it. For a pump strength which just depletes (T
=0), we find i,l, -&.5%, compared with -15/p in
the numerical results. '
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The depressions of the superconducting transition temperature T, as a function of Pr
concentration and the specific-heat jump AC at T, as a function of T~ have been measured
for the singlet-ground-state system (LaPr) Sn3. The results are we1l represented by nu-
merical calculations based on the Pr energy-level scheme determined from separate
measurement of the Schottky heat-capacity anomaly and the Van Vleck paramagnetic sus-
ceptibility contributed by the Pr ions.

In a recent series of papers, Fulde and co-work-
ers have developed a theory for the effect on su-
perconductivity of paramagnetic rare-earth im-
purities with crystal-field-split energy levels. ' '
According to this theory, the superconducting

properties of the matrix are modified by two com-
peting mechanisms. The first, a depairing mech-
anism, involves the usual conduction-electron-
impurity spin-exchange interaction which can be
operative even when the relevant impurity energy
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