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The nature of a particle orbit in an electrostatic plasma wave is modified by a magneto-
static field, because there exists a set of resonant parallel velocities (w +1Q)/k,. If the
wave amplitude &, is sufficiently large, neighboring resonant regions overlap, and the
particle motion becomes stochastic; the threshold condition is &,% (e/m)&,|J;(k,p)| ~ Q7 /16.
As an application, a weakly damped intermediate-frequency ion-acoustic wave may be

used to heat the tail of an ion distribution.

The character of the resonant interaction of a
particle with an electrostatic wave can be qualita-
tively different in the presence or absence of an
ambient magnetostatic field. In its absence, it is
well known® that particles whose velocity (pro-
jected along the wave vector) differs from the
wave phase velocity w/k by less than the trapping
half-width 2(e®,/m)'’® may be trapped into orbits
oscillating about the phase velocity at a bounce
frequency k(e®,/m)'2. This behavior, whose
short-term consequence is Landau damping,
asymptotically limits the net damping and energy
(or momentum) transfer of the wave to the reso-
nant particles.

In a magnetized plasma, an electrostatic wave
propagating at an oblique angle 6=tan'(k,/k,) to
the uniform field B,2 has a set of resonant paral-
lel velocities {V,} which satisfy

w=-k,V,==1Q, 1=0,x1,+2,..., (1)

where the left-hand side is the Doppler-shifted
wave frequency and the right-hand side is a multi-
ple of the gyrofrequency Q=eB,/mc. As shown
below, the trapping half-width at the /th reso-
nance is

w,=2|edJ (k p)/m|*?, (2)

where p is the gyroradius of the particle. When
the wave amplitude ¢, is so large that the trap-
ping layers (V,+w,) overlap, a particle can move
from one resonance region to the next, executing
a random walk in v, space, so to speak. As a

result, the mean net momentum transfer to the
particles can be appreciably larger than expres-
sion (2) would indicate. In this paper we study
the transition from “adiabatic”? particle trajec-
tories, when &, is small, to “stochastic” tra-
jectories, when &, is large. The motion of a
particle in a magnetic field and a single oblique
wave has previously been treated by Fredricks.3
Analogous studies on cyclotron heating in a mir-
ror field* and on “super-adiabaticity” °® may be
mentioned.

In the wave frame, moving at (w/k,)2 with re-
spect to the plasma, the particle Hamiltonian is

HE, D)=~ mQx9)/2m+ed,sin(k,z +k x).

Two canonical transformations allow us to write
the Hamiltonian as

. H(z’pz; (p,p¢)
=p,2/2m+ Qp, +ed,sin(k,z -k, psing), (3)

where p,=mv ,2/2Q is the canonical angular mo-
mentum of gyration, conjugate to the gyrophase
¢, and p= (2p,/mQ)'’/? is the gyroradius. This
Hamiltonian system has two degrees of freedom.
Since (3) is independent of time, in the wave
frame the energy of the particle is conserved.

To analyze (3), it is helpful to use a Bessel-
function identity to write (3) as

H=p?/2m+ Qp,
+ed, 2, J (k. p)sin(kz - 1p).  (4)

1613



VoLUME 34, NUMBER 26

PHYSICAL REVIEW LETTERS

30 JuNE 1975

If the wave amplitude is small enough, we can
treat the last term in (4) as a small perturbation
8H of the unperturbed Hamiltonian H,=p_%/2m

+ Qp,. The zeroth-order equations of motion
yield v,=z=p,/m, ¢=9, p,=const, p,=const.
Substituting z=v,{+ 2z, and ¢=Qf in the last term
of (4) yields

SH=ed,),,J, sin[(kv, - IQ)t+k,z2,].
When one of the resonance conditions
kp,-12=0 (5)

is satisfied, the motion is dominated by a single
term of the sum over [ for times much longer
than ©7'. [Note that w =0 in the wave frame, so
(5) is the same condition as (1).] The exact Ham-
iltonian (4) can then be approximated by

H,=H,+e®,J, sin(k 2z - lp), (6)

for which a constant of the motion (in addition to
the energy) exists: I;=p +1p,/k,. When the
wave amplitude is not small, the above analysis
breaks down, and we might expect no additional
constant of the motion to exist. By using the ex-
act Hamiltonian (3) we have found that the con-
stant of the motion does indeed disappear fairly
abruptly as the wave amplitude increases.

To visualize the disappearance of the constant
of the motion we use the “surface-of-section”
method. (This method has been used to analyze
several other nonlinear oscillator systems.® For
present purposes, we view it as a technique for
representing the four-dimensional phase-space
trajectory in two dimensions.) To construct the
surface-of-section plots, the trajectory is cal-
culated numerically using the Hamiltonian equa-
tions. We look at a cross section (¢ =) of phase
space, and see the trajectory represented by
dots in a three-dimensional space. We then pro-
ject the dots onto a two-dimensional surface.

The sample plot in Fig. 1(a) was generated using
Hamiltonian (3). In this case the dots, which
represent the coordinates of the particle at in-
tervals of the gyroperiod, are projected onto the
zp, plane. In some regions of the plane, which
we call adiabatic, initial conditions lead to dots
lying on a curve, indicating an additional con-
stant of the motion. In the other regions of the
plane, which we call stochastic, initial conditions
lead to dots filling an area, indicating that energy
is the only constant.

The condition for the onset of stochastic parti-
cle motion can be derived using the method of
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FIG. 1. (a) Sample surface-of-section plot. The A indi-
cates one of the adiabatic regions; S one of the stochas-
tic regions. Curves have been drawn to connect the
dots lying in adiabatic regions. The dashed lines repre-
sent the limitations on the particle motion due to con-
servation of energy in the wave frame. The parameters
have the fixed values &, p; =k, (2E/m)/?/Q=1.48, (&/
D=k led,|/mQ*= 0.1, 6=45°. The fifteen initial con-
ditions used to generate the dots are shown by crosses.
A chain of five islands is indicated by the numbers 1-5.
(b) Surface-of-section plot resulting from initial condi-
tions near the three accessible resonances, 1=0,+1.
The parameters have the same values as in (a) except
@/9) %= 0.025.

Walker and Ford.” We refer to the plot shown in
Fig. 1(b), for which the wave amplitude is small-
er than for Fig. 1(a), and all initial conditions
lead to adiabatic particle motion. Notice the
similarity in appearance of each of the three
curves to the phase-space orbit of a trapped par-
ticle in an unmagnetized plasma.'! In the magne-
tized case, the curves shown in Fig. 1(b) are
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near the separatrices which surround the reso-
nance conditions (5) for /=0, +1. From (6), we
see that the trapping half-widths are given by (2).
As the wave amplitude increases, these widths
increase. The additional constant of the motion
will cease to exist, and particle motion will
change from adiabatic to stochastic, when two
separatrices touch. We may then expect the par-
ticle to be able to move from the vicinity of one
resonance to the vicinity of another. This occurs
when (w,,,+w,), the sum of neighboring half-
widths, equals the resonance separation |V, ,
-V,1=89/k,; i.e., roughly when (w,/Q) ~g,
where w,=k,w,/2 is the bounce frequency at the
lth resonance. This crude estimate is in good
agreement with our numerical results, as dis-
cussed below.

When the wave amplitude is large enough that
particle motion is stochastic, the particle distri-
bution may be significantly heated by the interac-
tions with the wave. The evolution of the distri-
bution resembles a diffusion process in velocity
space. These results are illustrated in Fig. 2,
which shows two plots for different wave ampli-
tudes. In these plots the trajectory dots have
been projected onto the v v, plane instead of the
zp, plane. Eight initial conditions were used to
generate each of the plots: The initial conditions
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FIG. 2. Two surface-of-section plots illustrating the
transition from adiabatic to stochastic particle motion
and the onset of heating as the wave amplitude is in-
creased. The values of (&3/9)? are shown; the energy
parameter has the value k,0p=4.24 and 6 =45°. The
axis showing v, in the plasma frame is based on w
=3.6%. (a) Cross hatching shows the extent of the
thermal ions considered in the wave-heating example.
(b) The numbers 0, 1, 2, 5, 6, 7 show the coordinates
of the particle initially and at the ends of the corre-
sponding gyroperiods.

all have the same values of the velocity (k,v,,/Q
=k, p,=2.24, k,v,,/=~3.6) and gyrophase (¢,
=), but different values of z,. This set of initial
conditions corresponds to ring distribution (in
the plasma frame) 8(v,)6(v, —v, ,) when w =3.6Q.
In the case of small wave amplitude [(&/Q)?

=k 2led,l/mQ*=0.25], all initial conditions led
to adiabatic motion; the velocity of a particle
changed little from its initial value. In the case
of large wave amplitude [(&/)?=0.75], all initial
conditions led to stochastic particle motion, and
the time-averaged values of both perpendicular
and parallel velocities (in the plasma frame) in-
creased significantly.® The transition from adia-
batic to stochastic motion corresponds to an in-
crease of wave amplitude by a factor of 3. Our
results indicate the transition at about (&/Q)?
=0.50. In order to compare this result to the
condition (w,/Q) = ¢, we use /=-3 because
k,v,,/9=~3.6 is between the resonances /=-3
and —4, and for the parameters of Fig. 2 the
half-width w _; is several times w_,. The numer-
ically observed threshold condition is thus (w,/Q)?
=(®/Q)1J (kL p)I=(0.50)1J_45(2.24)|~ ¢z, which is
remarkably close to ﬁ, considering the crude
theory used.

To illustrate the application of these concepts,
we choose a particular wave, the intermediate-
frequency acoustic® wave, propagating at 6=45°,
This longitudinal wave has the dispersion rela-
tion w =kc,, very similar to an ion-acoustic wave
in an unmagnetized plasma. To be specific (and
consistent with Fig. 2) we choose w=3.6Q and
T,/T;=16. For these parameters there is negli-
gible linear ion-cyclotron—-harmonic damping.

We now examine ions in the Maxwell tail, specifi-
cally at v,=0 (in the plasma frame) and 2, p=2.29
[v, =3.8(T;/m)'*?], which are just the initial condi-
tions used in Fig. 2. These ions will be acceler-
ated by the wave when (®/9)* =20.50, that is,

when e®, = 37;. An acoustic wave with e®; =37,
=4r T, has a density amplitude &én/n =45 and a
wave-energy density w(8e/8w){E?)/8n~nT,/15,
and is thus in the linear regime. We have shown
the possibility of heating the tail of the ion distri-
bution by an intermediate-frequency acoustic
wave of frequency a few times the gyrofrequency,
propagating at an oblique angle, and of a certain
minimum amplitude.
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We present an analytic solution for Raman backscatter in a cold homogeneous plasma,
valid until saturation by breaking of the longitudinal waves, or by self-consistent deple-
tion of the pump. We give quantitative values for the pump strength necessary for the
former to occur first, and the transmission at saturation. Nonlinear particle bunching
causes growth of electromagnetic sidebands. In quarter-critical plasma, a sideband at
w= %‘*’o reaches 8% of the pump intensity at wave breaking.

Two phenomena of the radiation-plasma inter-
action, beat heating'™® and the stimulated-Raman-
scattering (SRS)*”® instability, are based on reso-
nant excitation of a longitudinal electron mode by
the beat between two electromagnetic waves.
When the cold-plasma approximation®: %! ig val-
id, i.e., when the thermal velocity of an electron
is smaller than its directed velocity, the excited
longitudinal modes are resonant plasma oscilla-
tions." Using Lagrangian methods,*"** we can
then follow the course of these phenomena analyt-
ically until wave breaking'® occurs, thus exposing
the physics directly. The analysis fails at that
point, but cold-plasma computer simulations®
show that growth of SRS stops when the longitudi-
nal waves break. Thus, the analysis is valid un-
til saturation begins.

Here we report some results of a study of Ra-
man backscatter in a cold, infinite homogeneous
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plasma. The physical system is shown in Fig. 1:
Two counterpropagating electromagnetic waves,
one a high-intensity pump at frequency w, | Fig.
1(a)], the other a reflected wave at frequency
w,— w,, growing from the noise [ Fig. 1(b)], beat,
thus exciting, via V xB forces in the longitudinal
direction [Fig. 1(c)], a resonant oscillation in the
ambient plasma. In the course of this oscillation,
the electrons undergo a density perturbation An,
while at the same time they quiver transversely
(with velocity v) in the electric field of the elec-
tromagnetic waves. The phase of the resulting
incremental current — evA#n is such that it reso-
nantly adds energy to the reflected wave at the
expense of the pump wave.® As the amplitude of
the plasma oscillation increases, the dersity per-
turbations steepen nonlinearly [ Fig. 1(d)] and the
incremental number density contains growing
components at all the harmonics of the beat wave.



