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Observation of Nonlinear Landau Damping of Broad-Band Plasma Oscillations
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Nonlinear damping of a broad-band spectrum of plasma waves has been observed. Fre-
quencies lower than the spectrum are growing from background noise. A shift of the en-
tire spectrum towards lower frequencies results. The evolution of the spectrum is in
good agreement with the predictions of weak-turbulence theory, Measurements of the

electron velocity distribution are presented.

Nonlinear damping of monochromatic waves,
electron Bernstein waves,' electron-plasma
waves,? and ion-acoustic waves® has been ob-
served. In this Letter we report experimental
observations of nonlinear damping and growth of
a broad-band spectrum of electron-plasma waves
excited in a plasma column, and a shift of the
entire spectrum towards lower frequencies due
to an unstable growth of the background noise
(i.e., thermal and source noise). Results of mea-
surements of the wave spectrum and the electron
velocity distribution are presented and discussed.

The experiments were performed on a collision-
less plasma column.* An argon plasma from a
PIG discharge drifts freely down a uniform mag-
netic field (1.3 kG) which can be considered as
infinite in intensity for the plasma densities used
(1.1x 108 electrons/cm™3). The electron tempera-
ture is 3.2 eV and the background pressure is of
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FIG. 1. Evolution of the complete frequency spectrum
over the distance, Experimental conditions: n,=1.1
X 108 electrons/cm?; By=1.3 kG; T,=3.2 eV; & =0.05.
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the order of 107° Torr.

A broad-band noise spectrum is injected into
the plasma column by means of a probe. The
central frequency of the spectrum is near the
mean plasma frequency and the relative width
Aw/w is 0.3. The correlation length is of the or-
der of 6 cm. The amplitude of the electric field
in the plasma is such that the weak-turbulence
parameter a=8,/nkT <0.05, where 8, is the
field energy density. The group velocity v,=1.5
x10®% cm/sec is almost constant over the width of
the spectrum while the phase velocity varies
from 2.7X 108 to 2.3%X10% cm/sec.

The evolution of the spectrum along the plasma
column, shown in Fig. 1 for a fixed value of the
initial-wave energy density, is measured by con-
necting a movable receiving probe to a spectrum
analyzer through a borad-band amplifier. For a
fixed distance from the emitting probe, the evolu-
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FIG. 2. Evolution of the complete frequency spectrum
with wave energy. Experimental conditions: 7 =1.1
x 108 electrons/cm?®; By=1.3 kG; T,=3.2 eV.
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tion of the spectrum as a function of initial wave energy density is plotted in Fig. 2. In both cases the
high-frequency part is heavily damped. Spatial growth for frequencies lower than those of the spec-
trum occurs. The growth rate depends on the wave energy density in the injected signal. Such results
have the features predicted by nonlinear Landau damping theory. Test-wave experiments confirm that
the spectrum evolution is due to nonlinear Landau damping; two test waves (w,,%,;w,,k,) are injected
into the spectrum and the beat wave number, k, -k ,, is measured.

In order to compare the experimental results with theory, an expression for the spectrum evolution,
taking the finite geometry into account, has been derived. For this purpose the Vlasov equation, after
linearization with respect to the distribution function, is solved up to the third order® and the result is
put into Poisson’s equation to give
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where the notation is standard,®” N () is the reduced density, and €., €®, and €® are, respectively,
the linear and nonlinear dielectric constants at the center of the plasma. The differential equation
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is closely related to the linear part of Eq. (1). Orthonormal solutions ¥,,,() of this equation exist for

certain values of the separation constant A,,,(#). By use of the expansion of &(,w,m,) in radial eigne-
modes,

Q(ky w,m ,1") =Ev‘p (ka w,m, V)d)kmv(y),
and by use of the orthogonality of the eigenfunctions ¥,,,() we find
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where G, and G, are overlap integrals of radial eigenmodes and where €,(k,w,m,v) is the dielectric
constant in finite radial geometry,

ek, w,m,v)=€.DE,w)+r,,[k)-1.

This leads to a usual integrodifferential equation for the spectrum evolution, taking account of finite
geometry,
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FIG. 3. Nonlinear growth and damping of two partic-
ular waves. Experimental conditions: 7y=1,1x 10
electrons/cm®; By=1.3 kG; T,=3.2 eV; @ =0.032,

where the notation is standard and g is a numeri-
cal factor of the order of 0.16 involving overlap
integrals of radial eigenmodes. An approximate
value of €, (k,w) can be derived from the con-
stancy of the group velocity in the frequency
range of the spectrum:

€ rl,w)=1-A/w-v,k/w,

with A =2,15X10% sec™!. T is deduced from lin-
ear propagation and the amplitude of the potential
¢ ,w,0,0) from power measurements and probe
coupling coefficients. Then, for given initial con-
ditions, the spectrum evolution is solved numer-
ically. The amplitude of the spectrum is normal-
ized to the measured value. Comparison between
theory and experiment is shown in Fig. 3 for two
components of the spectrum. The decay of the
90-MHz component and the growth of the 60-MHz
component are in fairly good agreement with the
theoretical curves.

The electron distribution function is measured
with a multigrid electrostatic analyzer for differ-
ent powers of the injected spectrum (Fig. 4). No
significant localized disturbance in velocity space
appears even around the group velocity of the
waves. However the whole distribution is changed,
remaining Maxwellian with a temperature increas-
ing with the injected power. The change of the
distribution evolves with the distance between the
transmitter and the analyzer and this eliminates
the trivial explanation of this evolution as being
created by effects of the probe field. For these
experiments, the autocorrelation length is of the
order of the trapping length; consequently reso-
nance broadening has to be taken into account.®
For values used in the experiments, a <0.05,
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FIG. 4. Electron energy distribution evolution with
wave energy. Experimental conditions: 7¢=1,1% 10°
electrons/cm?; B;=1.3 kG; x =56 cm.

the resonance-broadening width in velocity space
is of the order of or greater than the phase-veloc-
ity spread of the injected spectrum. Such a reso-
nance broadening may explain the heating of the
electron distribution function. However, because
of the agreement between theoretical and experi-
mental results on the spectrum evolution, reso-
nance broadening does not seem to affect the
basic features of nonlinear Landau damping as
predicted by weak-turbulence analysis.

In conclusion, nonlinear Landau damping of
broad-band plasma oscillations has been observed
experimentally. The experimental results on the
evolution of the spectrum agree with a theory
which assumes a constant distribution function.
However, we do not observe the localized distur-
bance of the electron distribution function which
is predicted by this theory. Moreover the ob~
served increase in temperature with injected
power implies that a supplementary mechanism,
such as resonance broadening, must be included
in order to solve the problem in a consistent man-
ner.
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The nature of a particle orbit in an electrostatic plasma wave is modified by a magneto-
static field, because there exists a set of resonant parallel velocities (w +1Q)/k,. If the
wave amplitude &, is sufficiently large, neighboring resonant regions overlap, and the
particle motion becomes stochastic; the threshold condition is &,% (e/m)&,|J;(k,p)| ~ Q7 /16.
As an application, a weakly damped intermediate-frequency ion-acoustic wave may be

used to heat the tail of an ion distribution.

The character of the resonant interaction of a
particle with an electrostatic wave can be qualita-
tively different in the presence or absence of an
ambient magnetostatic field. In its absence, it is
well known® that particles whose velocity (pro-
jected along the wave vector) differs from the
wave phase velocity w/k by less than the trapping
half-width 2(e®,/m)'’® may be trapped into orbits
oscillating about the phase velocity at a bounce
frequency k(e®,/m)'2. This behavior, whose
short-term consequence is Landau damping,
asymptotically limits the net damping and energy
(or momentum) transfer of the wave to the reso-
nant particles.

In a magnetized plasma, an electrostatic wave
propagating at an oblique angle 6=tan'(k,/k,) to
the uniform field B,2 has a set of resonant paral-
lel velocities {V,} which satisfy

w=-k,V,==1Q, 1=0,x1,+2,..., (1)

where the left-hand side is the Doppler-shifted
wave frequency and the right-hand side is a multi-
ple of the gyrofrequency Q=eB,/mc. As shown
below, the trapping half-width at the /th reso-
nance is

w,=2|edJ (k p)/m|*?, (2)

where p is the gyroradius of the particle. When
the wave amplitude ¢, is so large that the trap-
ping layers (V,+w,) overlap, a particle can move
from one resonance region to the next, executing
a random walk in v, space, so to speak. As a

result, the mean net momentum transfer to the
particles can be appreciably larger than expres-
sion (2) would indicate. In this paper we study
the transition from “adiabatic”? particle trajec-
tories, when &, is small, to “stochastic” tra-
jectories, when &, is large. The motion of a
particle in a magnetic field and a single oblique
wave has previously been treated by Fredricks.3
Analogous studies on cyclotron heating in a mir-
ror field* and on “super-adiabaticity” °® may be
mentioned.

In the wave frame, moving at (w/k,)2 with re-
spect to the plasma, the particle Hamiltonian is

HE, D)=~ mQx9)/2m+ed,sin(k,z +k x).

Two canonical transformations allow us to write
the Hamiltonian as

. H(z’pz; (p,p¢)
=p,2/2m+ Qp, +ed,sin(k,z -k, psing), (3)

where p,=mv ,2/2Q is the canonical angular mo-
mentum of gyration, conjugate to the gyrophase
¢, and p= (2p,/mQ)'’/? is the gyroradius. This
Hamiltonian system has two degrees of freedom.
Since (3) is independent of time, in the wave
frame the energy of the particle is conserved.

To analyze (3), it is helpful to use a Bessel-
function identity to write (3) as

H=p?/2m+ Qp,
+ed, 2, J (k. p)sin(kz - 1p).  (4)
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