
VOLUME 34, NUMBER 26 P 8YSI CAL RE VI E%" LETTER S $0 JUNE 1975

Observation of Nonlinear Landau Damping of Broad-Band Plasma Oscillations
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Nonlinear damping of a broad-band spectrum of plasma waves has been observed. Fre-
quencies lower than the spectrum are growing from background noise. A shift of the en-
tire spectrum towards lower frequencies results. The evolution of the spectrum is in
good agreement with the predictions of weak-turbulence theory. Measurements of the
electron velocity distribution are presented.

Nonlinear damping of monochromatic waves,
electron Bernstein waves, ' electron-plasma
waves, ' and ion-acoustic waves' has been ob-
served. In this Letter we report experimental
observations of nonlinear damping and growth of
a broad-band spectrum of electron-plasma waves
excited in a plasma column, and a shift of the
entire spectrum towards lower frequencies due
to an unstable growth of the background noise
(i.e., thermal and source noise). Results of mea-
surements of the wave spectrum and the electron
velocity distribution are presented and discussed.

The experiments were performed on a collision-
less plasma column. 4 An argon plasma from a
PIG discharge drifts freely down a uniform mag-
netic field (1.3 kG) which can be considered as
infinite in intensity for the plasma densities used
(1.1&& 10' electrons/cm '). The electron tempera-
ture is 3.2 eV and the background pressure is of

the order of 10 ' Torr.
A broad-band noise spectrum is injected into

the plasma column by means of a probe. The
central frequency of the spectrum is near the
mean plasma frequency and the relative width
ho)/a) is 0.3. The correlation length is of the or-
der of 6 cm. The amplitude of the electric field
in the plasma is such that the weak-turbulence
parameter n = 8~/nkT ~ 0.05, where S~ is the
field energy density. The group velocity v, =1.5
&& 10' cm/sec is almost constant over the width of
the spectrum while the phase velocity varies
from 2.7&& 10' to 2.3&& 10' cm/sec.

The evolution of the spectrum along the plasma
column, shown in Fig. 1 for a fixed value of the
initial-wave energy density, is measured by con-
necting a movable receiving probe to a spectrum
analyzer through a borad-band amplifier. For a
fixed distance from the emitting probe, the evolu-

$ (db)

0—
$ (db)

0—

& = 0.050

& = 0.035

5 — (K =0.025

—21—

20
I

40

i)-28 —"x:-~~ -~
I

60
I

80 100
F (MHz)

amplitude normalized
init ial spectrum

r /

I I I

20 30 40 50 60
I

70 80 90 100

( MHzj

FIG. 1. Evolution of the complete frequency spectrum
over the distance. Experimental conditions: n p

= 1,1
&& 108 electr oncs/mS =1.3 kG Te =3.2 eV n =0.05.

FIG. 2. Evolution of the complete frequency spectrum
with wave energy. Experimental conditions: n p

= 1 1
&& 10 electrons/cm; Bo ——1.3 kG T, =3.2 eV.
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tion of the spectrum as a function of initial wave energy density is plotted in Fig. 2. In both cases the
high-frequency part is heavily damped. Spatial growth for frequencies lower than those of the spec-
trum occurs. The growth rate depends on the wave energy density in the injected signal. Such results
have the features predicted by nonlinear Landau damping theory. Test-wave experiments confirm that
the spectrum evolution is due to nonlinear Landau damping; two test waves (v„k„v„k,) are injected
into the spectrum and the beat wave number, 0, —k „is measured.

In order to compare the experimental results with theory, an expression for the spectrum evolution,
taking the finite geometry into account, has been derived. For this purpose the Vlasov equation, after
1inearization with respect to the distribution function, is solved up to the third order' and the result is
put into Poisson's equation to give

(P'r' —k')4 (k, v, m, r) —O'N(x) [e „h~ (k, v) —1]C (k, ur, m, x)

O'N-(x)
2

e "(v,co')4(k', ~',m', r)(k —k', ~ —~', m —m', ~)

des' dj'g' de"
O'N(r-) I E'~'~(v, &u', v")C (k -k'-k", v —~' —ur", m —m' —m", v)

x C@',&u', m, r)4(k", &u",m", x) =0, (1)

where the notation is standard, "N(r) is the reduced density, and e „', e ', and E ' are, respectively,
the linear and nonlinear dielectric constants at the center of the plasma. The differential equation

[(Wr -k )+N(r)k2X]((r) =0

is closely related to the linear part of Eq. (1). Orthonormal solutions (»,(~) of this equation exist for
certain values of the separation constant X„„(r). By use of the expansion of 4(k, &u, m, x) in radial eigne-
modes,

C (k, v, m, r ) =Q„y (k, m, m, v)(»„„(r),

and by use of the orthogonality of the eigenfunctions (» „(r) we find

e~(k, ar, m, v)y (k, &u, m, v)

den' dk'
+ g ~"'(~,&u')y(k', ~', m', p)y(k -k', &u-co', m-m', q)G,

1T 2' ~ q p

"de' "dk'
+

2 & 2
(g

Il' /I

e~'~(e, (o', (u")p (k —k ' k", (o ——v' —w", m —m'- m ",p)2 I t1

V ~&~X

x p (k', ro', m ', v)y (k ",~",m ",X)G, = 0,

where G, and G, are overlap integrals of radial eigenmodes and where e~(k, v, m, v) is the dielectric
constant in finite radial geometry,

e~(k, &u, m, v) =eg&(k, ar)+X „(k)-1.
This leads to a usual integrodifferential equation for the spectrum evolution, taking account of finite
geometry,

8—(y y *(x,w, m, v)) = —2I ~(x, rv, m, v) (y y *(»;,u, m, v))

d('d
+ Q W(co ~(d )(pp +(» ~(d qm q p, )(Qcp +(Ãq(dqm

q v)) q

m iP

with
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Stochastic Acceleration by a Single Wave in a Magnetic Field
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(Received 10 February 1975)

The nature of a particle orbit in an electrostatic plasma wave is modified by a magneto-
static field, because there exists a set of resonant parallel velocities (&u +IQ)/k, . If the
wave amplitude 40 is sufficiently large, neighboring resonant regions overlap, and the
particle motion becomes stochastic; the threshold condition is k (e/m)4 0)j&(k~p) )

= Q~ /16.
As an application, a weakly damped intermediate-frequency ion-acoustic wave may be
used to heat the tail of an ion distribution.

2I e C,Z,(k-,p)/m I
'", (2)

where p is the gyroradius of the particle. When
the wave amplitude C, is so large that the trap-
ping layers (V, aw, ) overlap, a particle can move
from one resonance region to the next, executing
a random walk in v, space, so to speak. As a

The character of the resonant interaction of a
particle with an electrostatic wave can be qualita-
tively different in the presence or absence of an
ambient magnetostatic field. In its absence, it is
well known' that particles whose velocity (pro-
jected along the wave vector) differs from the
wave phase velocity &u/k by less than the trapping
half-width 2(eC, /m)'" may be trapped into orbits
oscillating about the phase velocity at a bounce
frequency k(e 4,/m)'~'. This behavior, whose
short-term consequence is Landau damping,
asymptotically limits the net damping and energy
(or momentum) transfer of the wave to the reso-
nant particles.

In a magnetized plasma, an electrostatic wave
propagating at an oblique angle 6=tan '(k~/k, ) to
the uniform field Bp2' has a set of resonant paral-
lel velocities (V,) which satisfy

~ -k,V, = -l~, l=Q, +1, +2

where the left-hand side is the Doppler-shifted
wave frequency and the right-hand side is a multi-
ple of the gyrofreguency D=eB,/mc. As shown
below, the trapping half-width at the lth reso-
nance is

result, the mean net momentum transfer to the
particles can be appreciably larger than expres-
sion (2) would indicate. In this paper we study
the transition from "adiabatic"' particle trajec-
tories, when 4, is small, to "stochastic" tra-
jectories, when 4, is large. The motion of a
particle in a magnetic field and a single oblique
wave has previously been treated by Fredricks. '
Analogous studies on cyclotron heating in a mir-
ror field' and on "super-adiabaticity" ' may be
mentioned.

In the wave frame, moving at (ur/k, )2 with re-
spect to the plasma, the particle Hamiltonian is

a(r, p) =(p —mQ&&y)'/2m+eeosin(k, z+k x).

Two canonical transformations allow us to write
the Hamiltonian as

=p, '/2m+ np +ee, sin(k, s —k~psiny), (3)

where p~= mv~'/20 is the canonical angular mo-
mentum of gyration, conjugate to the gyrophase
y, and p—= (2p~/mQ)"' is the gyroradius. This
Hamiltonian system has two degrees of freedom.
Since (3) is independent of time, in the wave
frame the energy of the particle is conserved.

To analyze (3), it is helpful to use a Bessel-
function identity to write (3) as

H =p,'/2m+ Qp~

+ e@,5~, J,(k ~ p) sin(k, s —Ip). (4)
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