
VOLUME 34, NUMBER 25 PHYSICAL REVIEW LETTERS 25 JvNE 1975

R. Koontz, E. Taylor, L. Trudell, and the en-
tire SLAC operations staff. We also wish to
thank C. W. Tu for his assistance during the ear-
ly stages of the experiments.

*Research (Yale Report No. COO-3075-90) supported
in part by the U. S. Energy Research and Development
Administration under Contract No. AT(11-1) 3075
(Yale) and Contract No. AT(04-3) 515 (SLAC); the Ger-
man Federal Ministry of Research and Technology and
the University of Bielefeld; and the Japan Society for
the Promotion of Science.

)Also at Nagoya University, Nagoya, Japan.
(Also at Los Alamos Scientific Laboratory, Los Ala-

mos, N. Mex. 87544.
&Also at University of Bielefeld, Bielefeld, West Ger-

many.
))Also at Yale University, New Haven, Conn. 06520.
F. J. Gilman, SLAC Report No. 167, 1973 (un-

published), Vol. 1, p. 71.
S. M. Berman and J. R. Primack, Phys. Rev. D 9,

217 (1974).
SLAC Users Handbook (unpublished), Sect. D. 3
M. J. Alguard et at. , in Proceedings of the Ninth In-

ternational Conference on Ilia Energy Accelerators,

Stanford, California, 1974, CONF 740522 (Stanford Lin-
ear Accelerator Center, Stanford, Calif. , 1974), p. 818.

Calculations by W. P, Lysenko and R. H. Helm place
an upper limit of 2.8 jo on the depolarization of the elec-
tron beam during acceleration to high energy; see also
R. H. Helm and W. P. Lysenko, SLAC Report No. SLAC-
TN-72-1, 1972 (unpublished).

6H. Frauengelder and A. Rossi, in Methods of Expel
mental Physics, edited by L. C. L. Yuan and C. S. Wu
(Academic, New York, 1968), Vol. 5, Pt. B, p. 214.

YD. M. Schwartz, Phys. Rev. 162, 1806 (1967).
A. M. Bincer, Phys. Rev. 107, 1434 (1957).
See., for example, J. D. Bjorken and S. D. Drell,

Relativistic Quantum Mechanics (McGraw-Hill, New
York, 1964), p. 140.

H. L. B. Gould and D. H. Wenny, Elec. Eng. (Amer.
Inst. Elec. Eng. ) 76, 208 (1967).

The y statistic was evaluated for each run, in which
25 individual measurements of the asymmetry were
combined to form a weighted mean. The X values for
all the runs are in good agreement with the theoretical

distribution. Thus no evidence exists for nonstatis-
tical fluctuations or drifts in monitors. In addition the
false asymmetry formed from adjacent mini-run pairs
of the same sign gave a result consistent with zero.

'2L. L. DeRaad, Jr. , and Y. J. Ng, Phys. Rev. D 11,
1586 (1975).

New Class of Bound-State Solutions in Field Theory

Paul Langacker*
DePartment of Physics, University of Pennsylvania, PhiladelPhia, Pennsylvania 1974

(Received 5 May 1975)

It is suggested that bound states can emerge in field theory as alternate solutions to the
Bethe-Salpeter equation, not corresponding to the Neumann-series (perturbation-theory)
solution. These new solutions are asymptotically similar to elementary-particle solu-
tions and imply nonperturbative anomalous dimensions in the Wilson operator-product ex-
pansion. For Goldstone bosons in standard quark models as well as for certain solvable
ladder models, these are the only bound-state solutions.

It is not at all clear that renormalizpble field
theories possess any bound states. The Bethe-
Salpeter equation' (BSE) in the ladder approxima-
tion (Fig. I) can sometimes be solved exactly' '
if one ignores the mass of the exchanged particle.
These calculations yield branch points rather
than Regge poles' for the t-channel partial-wave
amplitudes at q „=0. Perturbation calculations'
of the same class of diagrams indicate that these
branch points are fixed. This is disturbing be-
cause the Schrodinger equation, which possesses
bound states and moving Regge poles, can be de-
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FIG. 1. The Bethe-Salpeter equation (BSE) for T(p,
p', q) in the ladder approximation. A bound state corre-
sponds to a pole in T at q =mz . The bound-state ver-
tex function p(P, q) satisfies the homogeneous BSE.
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rived" from the instantaneous approximation to
the ladder-model BSE.

The undesirable solutions described above cor-
respond to the Neumann-series, or perturbation-
expansion, solution to the BSE. I propose to aban
don the Neumann series and look for alternative'
but acceptable solutions to the BSE which do pos-
sess bound states. I will, however, continue to
use perturbation theory for the kernel and propa-
gators (in principle bound-state effects could feed
back into these quantities).

I first remark that if one ignores the question
of the existence of bound states and simply looks
for solutions to the homogeneous BSE in the
asymptotic limit -p' and —(p+q)'-~, with their
ratio and q' fixed (or equivalently, taking ms' and
the internal masses to zero), then one finds at
least two solutions. '""" For spin-zero bound
states these are y+(p, q) - (-p') ' and y (p, q)
-(-p')' ', where e =O(g') andg is the coupling
constant. In asymptotically free theories ' one
can even justify the generalized ladder approxi-
mation (with momentum-dependent coupling con-
stants). In this case the two solutions become
y'(p, q)-(Inp') " and q (p, q)-(lnp')'s/p', with
A. and B calculable. The+ (-) solution will be
called irregular (regular) because of its short-

distance behavior in position space.
Older papers' have generally rejected the more

singular irregular solutions by analogy with the

quantum mechanical prescription. This argument
is dubious, however, because the BSE is itself
more singular at short distances than the Schro-
dinger equation.

I have found that in four models the only bound

state or Regge pol-e solutions are asymptotically
of the irregular type. Two models are in the lad-
der approximation: the pseudoscalar projection
of the Abelian quark-gluon model and the renor-
maiizable p' theory in 6 dimensions (y, ). The
other two are for exact kernels: the Goldstone-
boson solutions to Abelian. and non-Abelian quark-
gluon theories.

Consider first the ladder-model BSE for the y,
projection of T in the Abelian quark-gluon model,
which is appropriate for pseudoscalar bound
states and higher orbital excitations. Willey' has
constructed the Neumann-series solution for zero
gluon mass at the point q„=0. Defining (y,)"„T„
& (y,)'~—=12''F(p, p'), Willey performs a Wick
rotation to Euclidean space and makes an O(4) de-
composition of the p p' dependence of F. The
O(4) partial-wave amplitudes are F„(u,v), where
u=-p'/m' and v=-p"/m', The BSE for F„is
then

F„(u,v) = 2z2+„(u,v)+ e fo dw [w/(w + 1)]K„(u,w)F„(w,v)

K„(u,v) =(n+1) '(u, ) '(u, /u))"", (2)

where e =3@'/(4m)' and u, (u, ) is the larger (smaller) of u and v. Willey then converts (1) into the dif-
ferential equation

(
d' 2 d n(n+2) e,b(u —v)
du' u du 4u' u(u+1) " ' uv

for which he constructs the particular solution
F„(u,v) = —2m' Y~( u) ,Y'"'( u) The hy. pergeo-
metric functions Y,.("), which satisfy the homoge-
neous version of (3), have the asymptotic forms

Y (n)(~) ~(& 1)/2 +n/2- &/(n+1)

Y (n)( ) "[(&+1)/2] -[(n+2)/2 -6/(n+1)]

(4)

(5)

F„(u,v)=F„(u,v)+y„(u)y„(v)/(n-n, ), (6)

where the position n, of the Regge pole is arbi-

where v=—[(n+1)' —4e]"'. Willey's solution has
no Regge poles, only branch points atn = —1+ 2e' '.

It is simple to construct an alternative Regge-
pole solution to (3). It is

trary and y„(u)=C,Y, " (u)+C,Y', " (u). From (4)
and (5) we see that Y,'" corresponds to the irreg-
ular asymptotic solution for spin n and Y2" to
the regular solution. However, the integral equa-
tion (1) has boundary conditions not incorporated
into (3). One can easily show that the regular
solution Y,'") fails to satisfy the BSE at the limit
u-0 while Y, "' does satisfy it." Hence, the only.

Regge-pole solution is of the irregular type.
The y, ' theory is analogous. There are no Reg-

ge poles in the Neumann solution. ' One can con-
struct alternative solutions, but only of the irreg-
ular type.

One could argue that it is irrelevant that the
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regular solutions fail to satisfy the low-momen-
tum part of the BSE in the ladder model, because
the ladder approximation is unreliable there. It
is conceivable that the full theory has regular so-
lutions. There is, hozvever, one example of a
bound state in a full theory, which, if it exists,
must be of the irregular type: Goldstone bosons
in non-Abelian quark-gluon theories ox in Abelian
theo' es with an eigenvalue condition.

In the Abelian theory one can use renormaliza-
tion-group techniques to show" that the fermion
self-energy function Z(p) behaves asymptotically
as (-p'/m') ', where e =3g'/(4w)'+O(g'). This
result is based on a completely unambiguous ap-
plication of renormalized perturbation theory.
Similarly, in non-Abelian theories" Z(p) -I In(- p'/
m2)] ". In both cases the bare mass mp(A) of the
fermion vanishes Bs A- ~, suggesting" a chiral
symmetry. If this symmetry exis's and is real-
ized in the Goldstone manner (i.e., with nonzero
physical fermion mass) then the axial-vector
Ward identity requires" the existence of a mass-
less bound-state Goldstone boson with a vertex
function y(p) proportional to Z(p). Hence, y(p)
-(p') ' or (lnp') ", the irregular solution.

Several comments are in order. (a) In the lad-
der-model examples there is no quantization con-
dition on the pole position n, . I believe this high-
ly undesirable feature to be due to the approxima-
tions (zero-mass ladder exchange) and the spe-
cial kinematic point (q„=0) of high O(4) symmetry.
(b) The n = 0 irregular solutions in the ladder mod-
el or for Goldstone bosons are normalizable un-
der the most popular prescription. '" (c) These
bound-state solutions are similar asymptotically
to the vertex functions for elementary particles.

(d) Recently, several authors" "have tried to
use the Wilson operator-product expansion"
(OPE) to rule out the irregular solutions. To see
this, define the Bethe-Salpeter wave functiong(p,
q) as

s (p+q)q(p, q)s (p)

=g(P, q) -=9"e""&0IT(~(x)~*(0))IB(q)&,

where 8 is the bound state. For short distances
one has" T(g(x)g(0))-c(x)4(0)((0), so that g(p, q)
is given asymptotically as the transform of c(x).
If one computes" " c(x) perturbatively in terms
of the divergences in the matrix element of P*g
between elementary particle states, then one
finds that the regular solution is required.

However, the OPE is abstracted from the be-
havior of individual Feynman diagrams. Its valid-
ity in as nonperturbative a context as bound states
is questionable, especially if bound states origi-
nate as alternative solutions to the BSE rather
than from summing an infinite sequence of Feyn
man diagrams (the Neumann series).

This problem can be resolved by use of Zim-
mermann's nonperturtative derivation" of the
OPE. The first term is

T($(x)(*(0))„=,c„(x)E(0),

where
T(4(x)4*(0)).' p c„(x)

and c„(x)-=(alT(((x)(*(0))lb).The states a and b

are chosen as those for which c„(x)is the most
singular as x - 0. By construction all matrix ele-
ments of F(0) are finite. The previous applica-
tions" "of the OPE to the bound-state problem
have all implicitly assumed that a and b could be
chosen as elementary-particle states so that
c„(x)could be computed perturbatively. We now
see, however, that if the bound-state wave func-
tion is more singular than individual Feynman
diagrams it is necessary to choose a as the vac-
uum and b as the bound state. Then the transform
of c„(x)is the Bethe-Salpeter wave function g(p,
q). One can say that the leading term in the oper
ator product exp-ansion has a large anomalous
dimension that is due to the bound state itself
rather than from the ultraviolet divergences of
perturbation theory. "

(e) The electromagnetic form factor of a bound-
state pion behaves, "up to logarithms or perturba-
tive anomalous dimensions, as O(l) or O(q ) as
q'- —~ for irregular and regular wave functions,
respectively. These calculations have nothing to
do with such effects as the p meson, however.
-Perhaps the inclusion of bound-state effects in
the vector vertex could yield rapidly varying form
factors for the irregular solutions for large but
finite —q2.

(f) Cardy has recently shown" that the full BSE
for the asymptotically free p, ' theory is Fred-
holm. He has not, however, proven his claim
that there are moving Regge poles in the Fred-
holm solution. Both the momentum transfer and
the complex angular momentum enter the kernel
in a complicated nonlinear manner. Fredholm
theory tells us nothing about the singularity
structure of the solution in these parameters.
In a very interesting paper I ovelace" has shown
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the existence of an accumulation of regular solu-
tions to the homogeneous BSE near n = —1 in y, '.
This is a special feature of n = —1, however. I
also remark that although the Fredholm solution
is the unique square-integrable solution, there
may be alternative acceptable, but nonsquare inte-
grable, solutions to the BSE.

(g) Another argument against the notion that
strong coupling or asymptotic freedom must be
invoked to solve the bound-state problem is that
the same difficulties occur in quantum electro-
dynamics: Nobody has ever shogun the existence
of Positronium directly from the field theory.
Whether the irregular solutions proposed here'
yield positronium when they are continued away
from the forward direction is a crucial unsolved
problem.

It is a pleasure to acknowledge useful discus-
sions with Professor Gino Segre, Professor
Heinz Pagels, Professor Ralph Amado, Profes-
sor Abraham Klein, and Professor M. A. B. Beg.

*Work supported in part by the U. S. Energy Research
and Development Administration.

An excellent review is given by N. Nakanishi, Progr.
Theor. Phys. , Suppl. 43, 1 (1969).

B. S. Willey, Phys. Bev. 153, 1364 (1967). Willey
actually considers quantum electrodynamics but the
Abelian quark model is similar.

I. J. Muzinich and H.-S. Tsao, unpublished.
C. G. Callan and M. L. Goldberger, unpublished.

5I use the term Begge pole for any expansion group,
even in Euclidean space.

6See, for example, B. W. Brown et al. , unpublished;
J. D. Bjorken and T. T. Wu, Phys. Bev. 130, 2566
(1963).

~Superrenormalizable theories have Regge poles in
the ladder model. See B. W. Lee and B. F. Sawyer,
Phys. Rev. 127, 2266 (1962).

This reduction may be unreliable. See A. Klein and
T.-S. H. Lee, Phys. Rev. D 10, 4308 (1974), and refer-
ences therein. The ladder approximation could be the
source of the difficulties.

BSuch a nonperturbative Ansatz is made in other con-
texts, such as spontaneous symmetry breaking with
either elementary or bound-state scalars.

C. G. Callan and D. J. Gross, unpublished. They
consider the massless Yukawa theory, for which there
is a second irregular solution which they did not write
down.
"T.Appelquist and E. Poggio, Phys. Rev. D 10, 3280

(1974).
K. Lane, Phys. Rev. D 10, 2605 (1974).
The F &~"~ homogeneous solutions were first discov-

ered by J. S. Goldstein, Phys. Bev. 91, 1516 (1953).
Willey (Bef. 3) was also aware of them. They were
first taken seriously by H. Pagels, Phys. Bev. Lett. 28,
1482 (1972), and Phys. Rev. D 7, 3689 (1973), in the
context of the n =0 Goldstone boson.

~4S. Adler, Phys. Bev. D 5, 3021 (1972), and refer-
ences therein.

~5Pagels, Ref. 13. See also P. Langacker and H. Pa-
gels, Phys. Bev. D 9, 3413 (1974).

C. H. I lewellyn Smith, Nuovo Cimento 60A, 348
(1969).

~7K. Wilson, Phys. Rev. 179, 1499 (1968). See also
W. Zimmermann, Lectures on Elementary I'a&isles
and Quantum I'ield Theo' (Massachusetts Institute of
Technology Press, Cambridge, Mass. , 1970).

~ Lane, Ref. 12, has used the perturbative OPE argu-
ment to choose the regular Goldstone-boson solution
and concluded that Z(p) must behave nonperturbatively.
I reject this argument because it is the OPE and not
Z(p) that is directly affected by bound-state effects.
'~See, for example, Ref. 11.
J. L. Cardy, Phys. Lett. 53B, 355 (1974).

~~C. Lovelace, unpublished.

1595


