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The longitudinal polarization of the new Yale University-Stanford Linear Accelerator
Center polarized-electron beam has been determined at laboratory energies between 6.47
and 19.40 GeV. Spin-dependent elastic electron-electron scattering (Mglller scattering)
has been found to be a practical technique for polarization measurements at high energies.
The results are consistent with the energy and angular dependence predicted by quantum
electrodynamics and with an energy-independent beam polarization of 0.76+ 0.08.

Beams of polarized high-energy electrons will
provide unique information about the spin-depen-
dent structure of the electromagnetic and weak
hadron currents. " The first such beam has re-
cently been accelerated from the Yale University-
Stanford Linear Accelerator Center (SLAC) po-
larized-electron source (PEGGY) to high energies
and has been found to possess a reversible, ener-
gy-independent polarization of 0.76 + 0.03. The
SLAC 8-GeV/c spectrometer' was used to detect
the scattered electrons in a single-arm Mgfller-
scattering experiment in which both the electron
target and the incident beam were longitudinally
polarized. The measured asymmetry A = [v(&&)
—v(&&)]/[o(&&) +v(&&)], where v(&&) and o(&&) are,
respectively, the cross sections for hearn and
target polarization directions antiparallel and
parallel, was used in conjunction with the known
target polarization to determine the polarization
of the incident high-energy electron beam.

PEGGY, described in detail elsewhere, ' pro-
duces longitudinally polarized electrons by photo-
ionization of a state-selected Li' atomic beam,
with the sense of polarization determined by the
direction of a 200-G longitudinal magnetic field
applied at the photoionization region. The photo-
electrons, extracted at an energy of -70 keV,
are transported to the SLAC injector. Measure-

ments carried out by Mott scattering at 70 keV
have shown that the polarization of the electrons
leaving PEGGY is 0.8+0.1.

After acceleration to high energy' the beam is
deflected by 24.5' into the experimental area.
This 24. 5 magnetic bend causes the spin to pre-
cess relative to the momentum by an amount 0,
=yam(24. 5'/180 ), where y is the ratio of the elec-
tron energy to the electron mass and a = (g —2)/2
is the electron g-factor anomaly. If 0, is re-
stricted to multiples of n in order to maintain
longitudinal polarization, the useful beam ener-
gies are restricted to multiples of E,= 3.237 GeV.
Thus at 3.237 GeV the spin precesses by & rela-
tive to the momentum; at 6.474 GeV, by 2&; etc.
During this experiment the polarized beam de-
livered to the experimental area varied between
2 &10' and 7 &10' electrons per pulse at repeti-
tion rates up to 180 pulses/sec. Since the com-
pletion of the experiment, modifications to PEG-
GY have led to an increased intensity of 8x10'
electrons per pulse.

Mufller scattering, which has been used at much
lower energies to determine the helicity of elec-
trons from P decay' and muon decay, ' was chosen
to determine the high-energy beam polarization
because the cross section and analyzing power
are large and the process is purely quantum elec-
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TABLE I. Summary of polarization measurements. 0, is the spin-
momentum precession angle; Am» is the asymmetry expected for a fully
polarized beam in the absence of non-Mgller backgrounds; A, », is the
uncorrected asymmetry observed in the region indicated in Fig. 3;f is
the fractional contamination due to non-Mgller backgrounds; and P =A„~//
A m~x(1-f) is the longitudinal beam polarization averaged over both sen-
ses of source polarization.

(Gev)
Oc. m.
(deg) A mgx

6.474 27t

9.712 3&

9.712 3&

11.331 3.5&

19.402 67~

75.5 0.0551
90 0.0607

120 0.0402
99 0.0584

128.5 0.0308

0.0286 + 0.0017
-0.0384+ 0.0016
-0.0233 + 0.0030

0.0009+ 0.0028
0.0224+ 0.0025

0.33 0.768+ 0.051
0.19 -0.784+ 0.033
0.02 -0.588+ 0.074
0.15 0.018+ 0.057
0.07 0.785+ 0.088

ear relation between 8, and p for events within
the small spectrom'eter acceptance. The back-
ground events, which arise mainly from radia-
tive Coulomb scattering, are smoothly distribut-
ed in the (p, 8,) plane. Figure 3 shows event fre-
quency (corrected for detector acceptance) ver-
sus 48„ the deviation of 8, from that value ex-
pected from two-body kinematics.

The experiment comprised a series of runs,
each lasting about 1 h, during which the sense of
source polarization was unchanged. The sign of
the target polarization was reversed 50 times
during each run in a ++ ——... pattern of 100
"mini-runs. " The number of events in each mini-
run was converted to a cross section by normal-
izing to the charge collected by a secondary-
emission quantameter. These data were correct-
ed for electronic ("0.2%) and computer (-10/o)
dead times and for ambiguities in the p or 8,
hodoscopes (-3%). The 25 measurements of the
"real" asymmetry and the 50 measurements of a
"false" asymmetry which were extracted from
each run showed nearly ideal statistical behav-
ior. " Non-Mufller backgrounds were dependent
on kinematics and varied between 2% and 33%
(see Table I).

The raw asymmetries, typically 0.03, were
converted to beam polarizations by dividing by
the factor (1-f)A~r, where f is the ratio of
the non-Mufller events to the total number of
events, AM is the MPller asymmetry for fully
polarized beam and target, and P~ is the longi-
tudinal component of the target polarization (Pr
=0.083 cos 20').

The results, uncorrected for small spin-depen-
dent radiative effects, "are summarized in Table
I, and the longitudinal beam polarization is plot-

ted as a function of beam energy in Fig. 4. Over
the energy range studied, 6.47-19.4 GeV, the
data are consistent with lowest-order quantum

electrodynamic predictions for Mplier scattering
and with a longitudinal beam polarization of mag-
nitude 0.76+0.03, independent of energy and the
sense of source polarization. The uncertainty in
the polarization contains comparable contribu-
tions from statistics and from the target-polari-
zation uncertainty, with a smaller contribution
from uncertainty in the background correction.
Finally, it is interesting to note that the experi-
mental data shown in Fig. 4 are in excellent
agreement ((1%) with the accepted value of the
electron g-factor anomaly.

We gratefully acknowledge the technical sup-
port of M. Browne, D. Constantino, R. Eisele,
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FIG. 4. The longitudinal component, P, of the beam
polarization plotted versus wE/Eo, the angle through
which the spin precesses relative to the momentum dur-
ing the 24.5' bend into the experimental area. E is the
beam energy and Ep=8.287 GeV. The curve shown is
a best fit to the data and has an amplitude Pp = 0 76
+ 0,08 Pp is the only free parameter.
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It is suggested that bound states can emerge in field theory as alternate solutions to the
Bethe-Salpeter equation, not corresponding to the Neumann-series (perturbation-theory)
solution. These new solutions are asymptotically similar to elementary-particle solu-
tions and imply nonperturbative anomalous dimensions in the Wilson operator-product ex-
pansion. For Goldstone bosons in standard quark models as well as for certain solvable
ladder models, these are the only bound-state solutions.

It is not at all clear that renormalizpble field
theories possess any bound states. The Bethe-
Salpeter equation' (BSE) in the ladder approxima-
tion (Fig. I) can sometimes be solved exactly' '
if one ignores the mass of the exchanged particle.
These calculations yield branch points rather
than Regge poles' for the t-channel partial-wave
amplitudes at q „=0. Perturbation calculations'
of the same class of diagrams indicate that these
branch points are fixed. This is disturbing be-
cause the Schrodinger equation, which possesses
bound states and moving Regge poles, can be de-

a
p+q

harp p+q
p+q

sr p' ~~ p+q
+q

FIG. 1. The Bethe-Salpeter equation (BSE) for T(p,
p', q) in the ladder approximation. A bound state corre-
sponds to a pole in T at q =mz . The bound-state ver-
tex function p(P, q) satisfies the homogeneous BSE.

1592


