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Nucleus
Present
result (e,er) a

Shell
modelb

Mg
28S.

7,3
7.7

6.39 + 0.39
6.8 + 0.4

1.47
0.92

TABLE II. EO matrix elements (fm ) for monopole
transitions in 4Ng and Si.

tions from two-step processes are currently be-
ing investigated.

The authors are indebted to Dr. John A. Beeker
and Dr. P. J. Ellis for a critical reading of the
manuscript and to Dr. B. H. Wildenthal for pro-
viding us with shell-model wave functions.

'Ref. 11. "Ref. 1.

these wave functions cannot describe the deep
structure of the angular distribution. The strong
disagreement between experimental and calcu-
lated values of the (1d„,)(1d„,) ' particle-hole
amplitudes is similar to the discrepancy observed
with single-nucleon pickup reactions" which also
indicates the presence of a large 1d„, particle
amplitude. Also, the EO matrix elements ob-
tained in the truncated space of Ref. 1 a,re in poor
agreement with the data (Table II).

In conclusion we believe to have demonstrated
that the monopole inelastic cross sections allow
a remarkably sensitive test of nuclear wave func-
tions. In particular we find strong evidence for
significant 1P hole and 1d», particle components
in the wave functions of 4Mg and Si. We were
also able to derive EO matrix elements which
show remarkably good agreement with inelastic-
electron-scattering results. Possible contribu-
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The problem addressed is that of determining best values and confidence limits for the
amplitude and phase of an unknown harmonic amplitude vector, given a single set of di-
rections measured on a circle. The previously known solution, for the limiting ease of
small fluctuation, is inapplicable to the great majority of cosmic-ray anisotropy mea-
surements. Solutions are given that are thought to be valid for all cases likely to occur
in practice.

The following results were obtained in response
to a specific need that arose recently in the study
of cosmic-ray directionality above 10"eV, as
determined by air-shower observations. ' It was
found almost immediately that they are also use-
ful for reanalyzing a considerable body of accu-
mulated data pertaining to lower air-shower en-
ergies. The results will be developed in more

detail, and applied to cosmic-ray data from many
sources, in forthcoming publications. They are
presented here in general form with the thought
that applications may be found in other areas of
physics and astronomy.

I consider as data a set of N directions g»(„.. . ,g„such that 0 &
~P

~ 2n. I assume that the
individual values P,. have negligible error and
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equal weight. The usual formulas of Fourier anal-
ysis define a first-harmonic amplitude x and
phase g as follows':

(+2+ b2)i/2

where

a = (2/N) Q cosg;, b = (2/N)Q sing, ,

l~;fb, 0, . 0,
if 0,

l, ( '+ 27/ if b & 0, a & 0,

where ('=arctan(b/a), —m/2- ('& ~/2.
As the first of three alternatives, I suppose the

data set to have been drawn from a population of
directions distributed uniformly over the interval
0 to 27/. The asymptotic (N-~) probability distri-
bution of x (r distribution) for this case was first
given by Rayleigh. s Since the harmonic amplitude
can be represented as the resultant of N coplanar
vectors having magnitude 2 and directions P, ,

!
there is an exact analogy to the problem of a sim-

r

m(&r) = exp(- k,), k, =~'N/4. (2)

As a second alternative, I suppose the data
set to have been drawn at random from a popula-
tion of directions having a given fractional ampli-
tude s, with phase equal to zero. ' It follows that
r = s+x, where x describes the Rayleigh fluctua-
tion, and that the probability of r in dr, ( in d(,
is given by

pie two-dimensional random walk, first posed by
Pearson. ' Pearson's calculation' of the ~ distri-
bution for small values of N has been supplement-
ed by Greenwood and Durand, ' using an alterna-
tive formulation due to Kluyver. ' Having called
attention to the availability of an exact r distribu-
tion, in terms of which all that follows could be
reformulated, I develop the remaining argument
in terms of the much simpler asymptotic distribu-
tion, since from the point of view taken here it
proves to approximate the exact one adequately,
even for values of N as small as 3. The well-
known Rayleigh formula for probability of obtain-
ing fractional amplitude greater than x is given
by

P„,Chd( =(N/4m)exp[ N(t'+ s—' 2xs cos—()/4]x dr dg,

where —m & ( &m. Equation (3) is the starting point for derivation of Eq. (7), to follow. It is also useful
in itself. If s is given, for example by theory, it predicts the result of a series of observations, each
involving measurement of N directions. ' Integration with respect to x yields the differential probability
distribution of phase (g distribution)

2nP &
-—exp(-k) /1+ (mk)"'cos( exp(k cos'()[1+L erf(Lk' ' cosg)] j,

where k =s'N/4, erf(x) is the error function, and

(4)

+1if -m/2&(&~/2,
—1 if —7/ & ( & —w/2 or 7//2 &g & m.

Integration with respect to ( yields the x distribution

P„=(xN/2) exp[-N(x'+ s2)/4] I,(xsN/2), (6)

where I,(x) is the zero-order modified Bessel function. For s»N ' ', P& approaches a normal distribu-
tion about g = 0 with dispersion equal to (2k) "', while P„approaches a normal distribution about r =s
with dispersion equal to (2/N)"'.

As my last alternative I suppose the data set to have been drawn at random from an anisotropic popu-
lation characterized by s, whose value is now unknown, the population having been selected at random
from an ensemble in which all possible values of s (magnitude and phase) are equally represented.
Having calculated r and (, I inquire as to the probability P, z that the population from which the data
were drawn had s in ds and 8 in d8, where 8 is measured relative to g. According to (3), the various
s and 8 combinations have relative probability exp[-N(s'- 2sr cos8)/4]. The remaining structure of
Eq. (7) is determined by the requirement that p~e be normalized to unity:

P, e = [(k,/7/)' m'I, (k,/2)] exp[ —N(s2+ 2x2 —2sr cos8)/4]. (7)
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TABLE I. Column l: (() (expectancy), equal to [(wko)'/ exp(—ko/2)
xIO(ko/2)] '. Column 2: ( (most probable $), the solution of x —I~(2ko&)/
Is(2kox)=0. Column 3: a& (dispersion), equal to g[(()—$] p&d$) 'I . Col-
umns 4 5: 5% and 95% confidence limits' of (. Column 6: 68 3% confi-
dence limit of )0 I (degrees). Column 7: 95% confidence limit of ) 0 I (de-
grees). (Values shown in parentheses are correct mathematically but
have no practical utility. )

Column number

1/16

1/8

1/4

1/2

2.528

1.697

1.274

1.009

.875

0 1.758 (.18$) 5.719 108.1 (168.0)
0 1.286 (.154) 4.164 101.$ (165.8)

(.101) $.107 91.2 (165.5)

.758 (.082) 2 416 76 6 (157 9)

.597 (.078) 1.978 57.4 144.6

.857 .851 . .489 .107 1 ' 705 $7.5 107.$

.914 .950 .571 .280 1 ' 52& 2$ ~ 2

.964 .967 .256 .540 1.$8$ 15.1

.98$ .984 .178 .689 1.277 10.$
$0.8

20.6

.992 .992 .126 .785 1.199

.996 .996 .089 .849 1.142

7.5

5 ~ 1 10.0

Integration with respect to s yields the 0 distribution:

2m p s =[I,(k,/2) ] ' exp [k,(cos'6 —s )][1+Le rf(1 k, '~' cos 0)].

Integration with respect to 8 yields the s distribution, which I prefer to write in terms of the ratio (
= s/r:

P, = [2(k,/~)"'/I, (k,/2)] exp [-k,($'+-.')]I,(2k,[). (9)

It is noteworthy that ps and p, , like ts(&r) of Eq.
(2), depend on the directly measured quantities

0
0

( = s/r

FIG. 1. Differential probability distributions of ( = s/r
labeled with the values of parameter k 0

—pe/4 to which
they belong.

!
N and r only in combination as k, .

For k, »1, p s approaches a normal distribution
about 8= 0 with dispersion equal to (2k,) '~',
while p, approaches a normal distribution about
s =r with dispersion equal to (2/N)"' This be-.
havior of ps and p, in the asymptotic limit of
small fluctuation could have been predicted on
general grounds, as could the corresponding be-
havior of p& and p„. Likewise, the asymptotic ex-
pressions for dispersion could have been reached
by a shorter route. Those expressions have been
used for at least two decades in stating results of
cosmic-ray anisotropy measurements, often with-
out any apparent regard to the condition k, »1 on
which their validity depends. " The behavior of
p, is shown in Fig. 1 for a range of k, values.
Some useful quantities derived from Eqs. (8) and
(9) are given in Table I. It can be seen (column
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1) that unless k, »1, ~ is a biased estimate of s.
As k, decreases toward unity there is a tendency
for x to overestimate s. Fluctuations whose ef-
fect is to make ~ greater than s are more likely
than those with the contrary effect. This tendency
was noted by Cranshaw et a/. ,

"who suggested the
expression r [1 —'1/(2k, )]"' as an approximation
for (s). For k, values down to 1.5 the approxima-
tion is fairly good. Below that it breaks down be-
cause of an opposite tendency: For k, S 0.5, r
tends to underestimate s. Such values of k, imply
amplitude values so small as to be reckoned un-
likely even if s were zero. The amplitude is de-
viant no matter what one assumes regarding s.
Hence such a result has no power to discriminate
against s values that are sufficiently small.

This work was begun during the writer's tenure
of a British Science Research Council fellowship
at Leeds University, and benefitted from stimu-
lating discussions with Dr. Bryan Mercer, Dr.
R. J. O. Reid, and Professor J. G. Wilson. Above
all, important contributions by Dr. Alan A. Wat-
son, both in discussion at Leeds and in later com-
munications, are gratefully acknowledged.
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It is assumed throughout that the value of s is not
too near the maximum possible value of 2. If it were,
fluctuation effects would have little or no importance.

BAn equation structurally identical to (3) has been
given by S. Sakakibara [J. Geomagn. Geoelec, 17, 99
(1965)}. But her expression purports to be the s dis-
tribution: The variables corresponding to s and y have
their definitions interchanged. It is true that in the
small-Quctuation limit, Eqs. (3) and (7) transform into
each other by interchange of s and x. That is by no
means the case, however, when fluctuations are sig-
nificantly large.

An early criticism of that practice was given by
K. Greisen, Pwogwess in Cosmic Ray Physics (Inter-
science, New York, 1956), Vol. 3, Chap. 1. He com-
mented that unless ko»1, the "probability-of-error
distribution" (p„?,p p) is distinctly non-Gaussian, and
pointed out that unless ko»1 the (asymptotic) "stan-
dard error" cannot be assigned its usual significance
in terms of confidence limits.
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The decay asymmetries (8) in polarized ' B and ' N have been measured as a function
of p-ray energy {R). The coefficients e„, in a form of 8= +P(p/E)(l+e~E), have been
determined to be n (' B) =+ (0.21+0.06)%/Mev and n+('2N) = —(0.21+0.07)%/Mev. The
experimental value, n —n+= (0.52 +0.09)%/Mev. is larger than the prediction of con-
served-vector-current theory, (n —n+)&vc ~ 0.27%/MeV, and in favor of the existence
of the second-class induced-tensor current.

Because of the parity nonconservation in the
weak interaction, P rays are emitted asymmetri-
cally from polarized nuclei. Conserved-vector-

current (CVC) theory predicts, as a result of the
weak magnetism, a dependence of the decay
asymmetry on the P-ray energy as a higher-or-
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