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The current carried by a beam of electrons which have been scattered from an arbitrary
potential is shown to exhibit fluctuations with a 1/f spectrum up to f=0. The exponent of
f is smaller than unity by an amount determined by infrared radiative corrections. This
amount is essentially the fine-structure constant n and practically coincides with the 1/f
noise coefficient for one carrier. Similar noise is expected from current carriers in any
medium.

Electrical currents transported —e.g. , in solids or electrolytes by a small number of current car-
riers are known to exhibit low-frequency fluctuations (generally below f= 10' Hz) with a 1/f spectrum.
This 1/f current noise' is also known as flicker noise in vacuum tubes, semiconductor devices, or
thin films, as excess noise in semiconductors, or as contact noise in poor electric contacts. 1/f noise
is proportional to the square of the average current, and is inversely proportional to the number of
current carriers in the sample. No satisfactory general theory of this universal phenomenon has been
presented so far.

Quantum-electrodynamic scattering matrix elements (and cross sections) are finite, i.e., do not ex-
hibit infrared divergences, if coherent states (translated principal vectors) of the electromagnetic
field are used. ' The same finite cross sections are obtained also in the usual Fock representation by
adding the virtual- and real-photon contributions in the soft-photon limit, ' as was shown already by
Bloch and Nordsieck. What remains, however, in any case, is a peculiar e™dependence of the differ-
ential cross section on the bremsstrahlung energy loss e.

Consider the scattering of an electron with energy E by a fixed potential. The differential cross sec-
tion for scattering with an energy loss e &E/2 is given by Eq. 2.57 of Ref. 3:

(do/de) = F(ct A) exp[2a(B+ B)]((o.A/e) Po + G,(e)f. (1)

Here o is the differential cross section do /dQ for scattering at an angle 00 and o. is the fine-structure
constant, 137 . The expression in curly brackets is the conventional expression for bremsstrahlung
separated into the dk/k contribution and the remainder G, which is negligible for e «E and shall be
omitted here. P, is the elastic scattering cross section obtained by neglecting all radiative correc-
tions, e.g., the Rutherford cross section when the potential is a Coulomb potential. A is independent
of s, and F(o.A) is close to unity and of no further importance here. We are interested in small four-
momentum transfers (Iq'l«m'; 8=c = 1) for which the infrared exponent is given by Eq. 2.34 of Ref. 3:

2nq E Sn . , 0
2o.(B +B) = o. A ln —=, ln —=—P2(sin'~) ln —,E 3mm' e 3~ 2 E ' (2)

which also defines A. The last form is a nonrelativistic approximation (p=v/c «1) for small e which
allows p'=p. If eo is the detection threshold for low-frequency photons, or the lower-frequency limit
of the electric-current-noise spectral measurement, we write the integral of Eq. (1) up to an arbi-
trary e, «E in the form

v, =E(aA)P, (~) +aAf (
—
) (3)

The two terms in this expression will be observed as elastic scattering and bremsstrahlung up to e„
respectively. The latter is a coherent superposition of waves with slightly different energies. These
yie]d quantum beats with the elastic wave. The amplitude of the beats is proportional to the square
root of the integrand in Eq. (3). Consequently we can see from Eq. (3) directly that the scattered elec-
tric current will not be constant and will present fluctuations with a e " ' spectral density, i.e., 1/f
noise (0& aA «1).
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In order to clarify this fundamental observation we write the electron scattered wave within a small
solid angle AQ far from the scatterer in the simplified plane-wave form

y = a'exp[i(p ~ r —Et) ]+f, '(de/vs) b, exp[ip' ~ r —i(E —e)t]a, ~,

where, according to Eq. (3),

(4)

/as (~~)1l2(g/g )&w2
p

and a, ~ is a normed superposition of photon creation operators

a,~=a 'f f,'(8, y)a&~k dg . J /f, (8, y) [ dQ~ -—1; k= [k) =a,

which corresponds to the emission of a photon of energy a (of indefinite direction angles 8 and y).
From

[au a7' 1=5(k —k')

we obtain

[.„., ']=(k'/«)6(k-k) J,„f, '(8, V)f,(8, V)«~=«~-"). (6)

Note that the scattering matrix element corresponding to Eq. (3) is proportional to k "' and that the
e '~' dependence exhibited by Eq. (4) is obtained after multiplication with ak~, after the summation
over the final photon states is performed (which yields a factor k'), and after a, ~ is introduced [which
consumes ak, as we see from Eq. (6)]. f(B, y) is proportional to Ip/(k p) —p, /(k. p,)I and also includes
the phase of the scattering matrix element. p,. and p are the initial and final four-momenta of the elec-
tron and all spin and polarization variables have been suppressed, the electrons being treated classi-
cally. I have used the fact that in Eq. (4) p'=p independent of 8 because of the smallness of the energy
loss e which shortens p only imperceptibly as compared to p. In fact, c is so small for 1/f noise fre-
quencies (i.e., below 10'-10' Hz) that (p' —p) ~ r «m over the measuring region, or over a sample
whose 1/f noise is measured. Consequently we neglect p' —p, i.e., put p'=p in Eq. (4), except for the
case of feedback amplification, where it may lead to destructive self-interference as the wave g runs
many times through a closed loop. If integrated over the whole space, all current fluctuations dis-
cussed here would disappear because of the orthogonality of electronic wave functions for different, no
matter how closely situated, energies. If S is the cross section of the beam and a =a'vS represents a
constant, the current corresponding to Eq. (4) will be

2

j = SJ~Vg=p 1
G6

pge i%a 1 +e i&ta )E E
f(~'- ~) t

Denoting by IO) the vacuum state in the Hilbert space of detectable photons (Ikl) &,), we obtain for the
average current the expression

(j) -=(01j I 0) = p( [ a ('/m) (1+J 'p, de/&) (10)

which is in accord with Eq. (3). The fluctuation current is

gd& '&d& ldll g(&
~ &)g y 1 24K

6j=—j —(j)=p p,e"a, ~+H.c. + —, , p, p, .e' a,a,. — p, —
0 0 0

E

The corresponding autocorrelation function is

—,'[(0)&j (t+&)&j(t)~0)+c c ]=—,'p'. ,. ' coserde.-, Ial' '~t, '

Applying the Wiener-Khintchine theorem and restoring the usual units, we obtain the spectral density
of the relative current noise

((&j)')g -'&~'/f .~ ffo
(j)' [1+I'v 'df'/f'1' ' f,' (13)
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If we integrate from fo to f, we obtain the total
noise

&(»)'&=-'(f /f~) "(I-(fo/fg) "]&i&' (14)

6I (I/I) Z, »,
&I) (I/I)~.&j,&

If N is the number of carriers in the semiconduc-
tor, the relative-current noise spectrum is given
in terms of the single-carrier noise spectrum by

&(sI)'&, „~,&(»,)'), „~&(»)')&
&»' (~;&j;&)' ~'(~) ' (Is)

which has a maximal value of (j)'/8, independent
of nA, for (f,/f, ) "=-,'. This suggests that for
"halfway resolution" 35% rms 1/f noise is asso-
ciated with the dc current carried by one carrier.

It is important to mention that a 1/f noise simi-
lar to Eq. (13) is obtained when the incoming par-
ticles are described by a density matrix which
corresponds to an arbitrary (incoherent) mixture
of states with definite energies E;. This 1/f noise
is an incoherent sum of 1/f noise contributions
arising from all components of the density ma-
trix. The classical treatment of the electrons
shows that our result applies to any type of charged
particles. Consider now the current noise of a
small cylindrical semiconductor sample of length
l with Ohmic contacts at the ends. Suppose that a
nonlocalized electron from a certain point on the
Fermi surface of the metal at one side is scat-
tered into a state which carries the current through
the semiconductor to the metal on the other side.
If we average this state in the semiconductor over
the distribution of atomic position coordinates and
of atomic and crystal quantum state parameters,
we obtain the coherent wave' which carries the
electron through the semiconductor. This aver-
aged wave includes the effect of multiple scatter-
ing in the semiconductor. The coherent wave is
defined over the whole semiconductor, and has a
form similar to Eq. (4) with the effective mass
of the carriers and the medium velocity of light
included in Eq. (2). This coherent wave will yield
a current similar to Eq. (9) and current noise ac-
cording to Eqs. (13) and (14). The 1/f part repre-
sented by the integral in Eq. (4) will not suffer
extinction in the averaging process because of the
smallness of (p' —p) rh ' for 1/f noise frequen-
cies.

Denoting by j;= (j,) +»; the global current ev, 1"&

carried by the carrier i in the axial direction x,
we write the relative current fluctuation through
the sample in the form

~EgaA 8n/Qw = 2 x 10 3. (18)

This coincides with the experimental value ob-
tained by Hooge. "

The present theory can be considered as a quan-
tized form of the turbulence approach to 1/f
noise."At low frequencies this theory predicts
1/f noise for all currents occurring in quantum
electrodynamic processes which admit infrared
radiative corrections, i.e., all processes involv-
ing charged particles. It predicts, e.g. , that the
small electric currents carried by radioactive P

where z is a corrective factor which takes into
account the correlations between carriers. For
z= 1 no correlations are present. With the use
of Eq. (13) we obtain finally

&(sI)2),=-,'~uXy 'x 'I'.
This final result has the form of 1/f noise which

is observed experimentally. '~ A is an average
over the scattering angle in Eq. (2).

Consider an electric circuit with a bad contact
in a certain point P. The bad contact can be rep-
resented by a potential which scatters the elec-
trons and P corresponds to the spatial position of
the Coulomb potential interaction vertex in the
Coulomb scattering example. In the case of 1/f
noise from a semiconductor sample, the whole
sample corresponds in fact to the Coulomb poten-
tial and it is only a matter of convenience whether
we use part of the interaction to dress the final
state. If inelastic scattering is considered, the
cross section which replaces Eqs. (1) and (3)
turns out' to be a convolution of the uncorrected
cross section for inelastic scattering with the
probability of soft-photon emission. This will
again lead to 1/f noise in any of the inelastically
scattered currents of given energy. When we
sum these incoherent 1/f noise contributions, we
obtain the same result as above.

The vertex corresponding to the emission of a
detectable photon is located in the metallic con-
ductors before or after the sample, bad contact,
or other obstruction. The phase velocity of low-
frequency electromagnetic waves is very small
in metals compared with the vacuum (e.g. , 10'
cm/sec in copper, f in Hz). If we consider that
most of the soft-photon emission of a given fre-
quency occurs at carrier velocities close to the
corresponding value of the phase velocity of elec-
tromagnetic waves in the metal, we are led to set
P =1 in Eq. (2). Taking &sin'(8, /2)) = —,

' and ~=1,
we obtain

1494



VOLUME 34, +UMBER 24 PHYSICAL REVIEW LETTERS 16 JUNE 1975

or o. emissions will show 1/f noise at low fre-
quencies, as is well known for photoelectric cur-
rents, or for an electron beam emitted by a hot
filament. In a similar way, at sufficiently low
frequencies, it predicts 1/f noise in neutral
beams and macroscopic streams of matter, due
to emission of gravitons.
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The quantum theory of 1/f noise developed in the preceding Letter is extended by show-
ing that because of interaction with the electromagnetic field, an alternating current car-
ried by a beam of electrons emerging from some scattering process will present phase
fluctuations with a 1/f spectrum. These fluctuations are expected in any ac current.
They have similar power spectra, also determined by infrared radiative corrections,
to dc 1/f noise.

1/f noise is known as the most important form of low-frequency electrical noise. In the previous
Letter 1/f noise has been explained as an intrinsic current-fluctuation process which arises from the
interaction of the current carriers with the electromagnetic field. It is known that this interaction as-
sociates a probability amplitude for low-frequency photon emission to any scattering process with
charged particles. In fact, any dc current involves scattering of charged particles, arising from vari-
ous interactions of the current carriers. Thus, any current should present some 1/f noise. The re-
sultant 1/f noise coefficient is inversely proportional to the number of current carriers in the sample.

The emission of low-frequency photons in the frequency range of experimental 1/f noise, i.e., below
10 Hz, carries an utterly negligible amount of energy, which is uniformly distributed over frequen-
cies down to f=0. This uniformity is obvious if we remember that the bremsstrahlung cross section
is proportional to df/f and the energy of a photon is hf. Although the energy is negligible, it can be
shown that an intrinsic nonstationarity of the current is caused by the low-frequency photon emission.
It turns out that each of the df/f photons contributes equally to the current noise spectrum, by "modu-
lating" the current carried by the particle which emitted the photon. Indeed, the average of cos'2' t
is s, independent of f, and a 1/f spectrum is the result.

The aim of the present paper is to present another aspect of the same basic phenomenon. Whenever
a harmonic high-frequency signal is carried or generated by a finite number of current carriers, a
phase-noise measurement will detect phase fluctuations with a 1/f spectral density. Consequently, the
resulting power spectrum of the electric current will contain quantum noise sidebands with a 1/Af
spectral density.

In the presence of a harmonic signal of frequency ~, the state of a current carrier can be described
as a mixture of pure quantum states, among which we also expect states of the form

y, = a(exp[i(p, r -E,t)]+ exp [i(p, r -E,t)]),
with E, -E2= ~„h= l. , e = 1. Such a split energy state generates an ac current component:

2

q, Vq = (p, + p, + p, exp [i(p, —p, ) ~ r —i(u, t]+p, exp [- i(p, —p, ) ~ r +i(dg] )t, (2)


