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A recent classical theory for spin glasses of Edwards and Anderson is modified for the
quantum mechanical case. One obtains a cusp in the susceptibility y{T) and in the specif-
ic heat c~{T) at a characteristic temperature T& for finite spin S and zero slope for S-~.
The specific heat is proportional to T for T —0, whereas it tends to the Boltzmann con-
stant k in the classical limit.

Spin glasses are random, fairly dilute magnetic
alloys, such as AuFe or CuMn, with magnetic im-
purity concentrations c roughly between 10 ' and
10 '. They show a variety of surprising proper-
ties, the most famous one being a sharp cusp in
the static susceptibility at the so-called freezing
temperature T&.' These properties are due to
exchange couplings of alternating sign between
the magnetic atoms, the most important one be-
ing the Ruderman-Kittel-Kasuya- Yosida interac-
tion, which lead at low temperatures to a compli-
cated (and not yet completely understood) spin
structure. At lower concentrations these inter-
actions are severely influenced by Kondo or spin-
fluctuation effects which in the single-impurity
problem lead at T =0 to vanishing effective im-
purity moments; at high concentration more con-
ventional (ferromagnetic or antiferromagnetic)
order of sufficiently long range sets in and again
impairs the characteristic spin-glass properties.

Recently, a new theory of spin glasses was pro-
posed by Edwards and Anderson' (hereafter re-
ferred to as EA), in which a classical Heisenberg
model with a random distribution of exchange
interactions is considered. Assuming that the
loca/ part of the susceptibility is essential for a,

spin glass, they derive a self-consistent equation
for the quantity q—= [(S«)']„. Here, () indicates
thermal averaging for a fixed configuration of
magnetic impurities with spin S«and []„means
averaging over a Gaussian distribution of ex-
change interactions. The quantity q vanishes
above the freezing temperature Tz and leads to

discontinuities in the slope of the susceptibility
y(T) and specific heat c„(T) for vanishing ezter-
nal field H„as one would expect for a third-or-
der phase transition. However, the slope of l«(T)
turns out to be zero just below T&, in contrast to
the cusp found in many systems. ' Furthermore,
the solution of the self-consistent equation for p
for T - 0 leads to c„(0)=k (k is the Boltzmann
constant) which is reminiscent of the behavior of
a classical spin in an external magnetic field at
T =0.

This Letter presents a quantum mechanical
treatment of the same model. The additional dif-
ficulty due to the complicated commutation rela-
tions of the spin components is avoided by con-
sidering the simple mean-field approach of EA.
I find (as ezpected) c„(T) to be proportional to T
for T -0 and y(0)/lt(T&) =0.69 for S =2 as com-
pared to 0.92 in the classical limit and 0.6 from
experimental data. ' Most important, a cusp with
finite slope just below Tf is obtained for the sus-
ceptibility and for the specific heat. For S- ~,
this slope tends to zero, in agreement with the
results of EA.

First l discuss the meaning of the order param-
eter q. The system is described by a Heisenberg
Hamiltonian, including an external field H, (t«B is
the Bohr magneton, N& is the number of magnetic
atoms, a,ndg=2)':

j. At

X = —~Q«, J«,.S« ~ S. +h+«S;, h = gt«gH, . —

The static susceptibility y is obtained4 from the
free energy I:

X -=Q«~lt«« = —(gP««)'(O' F/Bh')I«, -.=E«,1[(S,' S,.)]„-[(S,)~ (S,)],„j)8/X«S(S+1), (2)

with the susceptibility of independent spins y'=lV;S(S+1)(gpss)'/SkT. The first term in the curly brack-
ets of (2), being essential for a phase transition in a ferromagnet (and also in a recent theory of spin
glasses by Adkins and Rivier ), is thought to be rather irrelevant for spin glasses. It is believed that
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the basic properties of spin glasses are already seen in the local susceptibility y;; for which this term
reduces to S(S+1), whereas the second term reduces to the quantity q defined above. Thus it is char-
acteristic for spin glasses that the thermal average &S;)t 0 for T & Tz and for a given impurity configur-
ation, corresponding to a time-independent random internal field which acts on the spin at the site i.
As is well known, in many cases a system of interacting particles can formally be described by a sys-
tem of independent particles in a fictitious randomly fluctuating field. ' In spin glasses this field is
real, and the corresponding interactions lead to a well-defined transition temperature T&.

Following EA, I calculate the free energy I' of the system from

PIi —=[lnZ]„= lim(([Z ]„-1)/m],
5t ~p

with (n =1,. .. ,m)

[Z ], =gTr exp(-PH)} ], =[Tr„exp(-P+„H")]„
=-frr [«„~(J„)]Z,".Z."&m "I" exp. ( PZ-If") . . Im. »").

CX

The trace is performed with the mV»(2S+1) eigenstates ~m» ) of S» ~,", where

QH =- ~+J»;QS;" S~ "+hg S» ~,".
n f~n

(4)

Thus& formally, the three degrees of freedom per spin are replaced by 3m degrees of freedom with
[S»",S» ]=0 for nOP, wherem 0. Since the analytic continuation of Z fromm=1, 2, . .. tom-0
might not be uni»lue, I checked Z in E»I. (4) for m 0 classically by comparing it with the linked-clus-
ter (high-temperature) expansion of lnZ. ' Both expansions agree at least to order J'. However, a gen-
eral proof of (4) for m 0 seems to be difficult.

To proceed, I assume for the exchange interactions J„.a Gaussian distribution with different widths

&
for different neighbors of the impurity i:

S (J„)=(2~) '"~„'exp(- J,,'/2~„. '). (6)

In simplest approximation one introduces a cutoff for 4;;. The assumption &&; =& for all i,j would
lead to 4;,' proportional to N& ', which is very unsatisfactory.

The J integration in (4) with (5) can easily be carried out for a single pair by expansion. However,
it is not straightforward for the general case, since the commutator [(S;~ S,), (S;~ S„)]e0. Therefore I
restrict myself to a mean-field approximation. Resorting to the Feynman variation principle, one
writes (compare EA)'

[Z"]„~

Tr„(exp[-Phasm;"+-,

't; g (S," S»')+C]fg(»»»2ds„) exp(-PJ„')
j~n f, n&8 fj fj

&&0+2P'Z&», 'J» (Zs» s,")' aL Z s»"-s» —C]). (6)

Here, f and C are variation parameters, and J», =—J», /2'"4»;. The Ansatz (6) for the trial free energy
Fo [the first term in the curly brackets is m(1-PJ', ) with m-0] is motivated, of course, by the as-
sumption that correlations &S, ~ S,) with i 0j are not essential. I checked this point, replacing P5»; by f»z
with B[Z ],„/8$„=0, and found y(T) and c»»(T) essentially to be unchanged near Tz if [&S» S;)]„varies
smoothly in this temperature range.

The remaining calculation is completely analogous to EA. One obtains with

&(gs," s, ")'&, =Q &s„"s„'&,&s,,"s,,'&, =,'Q&s, " s, '),&s,.
" s,.'),

n n8X. n8

the variation parameter

C =2N»m(~6P262[S2(S+1)~+(m —1)q2] —t;q(m —1)j,
where b'= Q&» and where q =z, '&S;" S, )—, = 2m '(I —1) ' 8 lns, /sf with a W p. The thermal average
&), is defined as

&. . .), = Tr„[.. . exp-,'t; Q (S,"-S; )]/z, "»,
i, n&8

1439



VOLUME 34, NUMBER 23 PHYSICAL REVIEW LETTERS 9 Jt»NE 1975

where

so= Tr„[exp~|; g (S»" S» )]

=exp[--,'mfS($+1)](2m) '"fd'r exp(--,'r'){si nh[($+&)f' I'r]/ si nh( 2f' »'r)j .

Variation of E, with respect to t; yields f =&(Pb, )'q. One finds with (9) for m 0 and k =0

$(S+1) —q = (2v) "'fdsr exp(- —,'r')rg "{(S+-,') coth[(S+-,')t,""r] ——,
' coth(2&'"r)}. (10)

The expression in the curly brackets is identi-
cal with the Brillouin function SB,($)'I'r). Equa-
tion (10) reduces in the classical limit with S' =1
to the result of EA. Since the argument of the
Brillouin function contains f'" q'~-', rather than

q, the susceptibility near T& behaves differently
from that in an ideal antiferromagnet.

Expanding (10) for q- 0 yields

q =g(1 —t)[(2S+1) -1]2/[(2$+1)' —1],
which reduces to the classical result q =1-t for
S ~. Here, t = T/T& w-ith

kr, =~~[(2$+1)'-1]'"
as compared to the classical value kT& =b./3.
The susceptibility, Eq. (2), g(T) =y'[1 —q/$($+1)]
shows a cusp w'ith positive slope for t ~ 1 for all
finite spin values S. Since

~ =Z, [~,, ],=Z,~„'[.J'].,-.
one has T& o-c'". However, in view of the crude-
ness of the model, the agreement with the experi-
mental values' 7.'& o= c", with 0.55 ~ n ~ 0.75, seems
to be rather fortuitous. For t 0 and S =& one

has q = ~ —(5/6v)'"t —(5/9»r)t', as compared to
the classical spin with S' =1, where q, =1 —(8/
3v )'I t —&(4/»» -1)t'. For t & 1 one has the sus-
ceptibility of free spins. Since all lattice effects
have been neglected, the present model should be
more suitable for amorphous spin glasses where
one observes above T& a, Curie-gneiss law with

8 = 0, in agreement with theoretical results. "
The functions q(t) and y(T)/y(T~) are indicated in
Figs. 1 and 2(a) for S = —,

' and for the classical
11Qllt.

The zero-field specific heat cz =du/dT per spin
is obtained from the internal energy

u =kr2V» '8[lnZ]»/sr
&2(6kZ') &[$2($+1)2 q2] (12)
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For S =& and t-0 we have, besides exponential
terms, u/kT& = —(8/5~)'»'(zq '"+q'»') which leads
to c/»k»=(8/9»»)t[1+(160/27»»)1™t+ . ~ ] and in the
classical limit to c/»k»=1+ (8/3»»)'"(1 —2/~)t
+O(t '). Near t =1 one has c„/k =0.9-0.75(1-t)
and c„/k = &[1 —1.2(l —t)'], respectively. The
temperature dependence of the specific heat for
both cases is indicated in Fig. 2(b). The value
c~ =A at t =0 agrees with that for a classical spin
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FIG. 1. The parameter q versus reduced tempera-
ture t =T/T&— FIG. 2. (a) Susceptibility and (b) specific heat versus

temperature t .
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in an external magnetic field. For t & 1 one has
in all cases c& o=T, as is also obtained for inde-
pendent spins in a magnetic field A, «kT.

Results for the magnetic field dependence of
Z(&) and cs(T) and for the entropy will be pub-
lished elsewhere.

I would like to express my sincere thanks to
G. Iche, P. Nozieres, and J. Ranninger for help-
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We have investigated the number, Nz, of displaced lattice atoms in room-temperature
implantation in Si of polyatomic-carbon-ion beams {C„and C„„O„+) for several values
of n, using the backscattering-channeling-effect technique. For each ion species the
same energy (8.8 keV) per carbon and the same atomic fluence and flux were used. N&

increases rapidly with increasing n, indicating that the deposited-energy density within
the collision cascade is a key factor in determining how much damage is created and re-
tained.

The use of polyatomic- (or molecular-) ion
beams in ion implantation provides a simple, di-
rect method of varying the deposited-energy den-
sity within each individual collision cascade,
while maintaining constant most other cascade
parameters such as ion range or cascade volume.
It thus provides a powerful technique for investi-
gating some of the mechanisms involved in radia-
tion-damage studies: for example, the role of
"energy-spike" effects as recently discussed by

Sigmund, ' or the possible existence and magni-
tude of significant annealing stages during im-
plantation.

Moore, Carter, and Tinsley found that diatom-
ic heavy ions (As, +) implanted into GaAs at room
temperature produced about 3(P/g more damage
than the same number of As atoms introduced as
monatomic ion species (As+ ). In silicon, an even
larger "molecular effect" has been observed, '
with the diatomic heavy ions (As, +, Sb,+, Te,+,
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