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Excitation of Alfven Waves by High-Energy Ions in a Tokamak*
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It is shown that shear Alfven waves can be destabilized by resonance with high-energy
"beam" ions near the magnetic axis in a tokamak, if the beam is radially nonuniform.

In a plasma heated by high-energy neutral-beam injection, especially in proposed devices using very
powerful injection, the nonequilibrium plasma stability properties must be examined carefully. Previ-
ous work has indicated that the distributions that are likely to arise from injection should be stable to
velocity-space instabilities in a uniform medium. In particular, for isotropic injection the beam slow-
ing-down distribution is monotonically decreasing in energy, and thus stable to all such modes. Hence,
it becomes of interest to look at the modes associated with nonuniform beams and plasmas. In this I,et-
ter, we examine the possibility of beam excitation of the shear Alfvdn waves. In projected experiments,
beam velocities lie just below the Alfvdn speed vA, and hence might be in the proper range for reso-
nant excitation.

As is well known, the dispersion relation for shear Alfvdn waves is given by ~ =k ~~vA—= ~A. In toka-
mak geometry, complications arise in describing the radial eigenmodes since k

~~
is a function of radi-

us. Thus, for a mode like exp(-im8+ in/), where 6 is the poloidal angle and f the toroidal angle, we
have k II(t): (nq —'m)/qR where q(r) = rB ~/RB e,' for positive I and n, k „(r) is an increasing function of
r when the current density is centrally peaked. In the magnetohydrodynamic (MHD) approximation, the
eigenmodes for the fluid displacement $(x) are singular at a radius where ur =A(x). To resolve this
singularity, it is necessary to include finite gyroradius effects outside the MHD approximation. We
will see that these effects also introduce damping of the waves by means of electron dissipation, espe-
cially collisions of magnetically trapped electrons. We will also see that the high-energy beam ions
can interact resonantly with the waves by means of their VB drifts; for nonuniform beams this interac-
tion is destabilizing whenever v & co.„where ~., is the diamagnetic frequency of the beam.

Where e = v'/2 and p = v ~'/2B, the guiding-center drift equations to an adequate approximation are

E XB - m(pB+ V,I')
nxVB&B eB

m 32 2~K 4c e
v&= 2(1+~p V& ) ~ di

= (vIIEII+vL'E)iea' (2)

with p=mv~/eB, the gyroradius. Here v~ is the polarization drift including finite gyroradius effects.
The drift kinetic equation is then

af/8 &+ v
II n ~ Vf + (vs + v I,) Vf+ V (vj') + (e/m)(v IIE II

+ v ~ E)af/8 e = Cf,

where we have also introduced a collision operator C. For shear Alfv6n waves in a low-P plasma, we
can represent the perturbation electric field by

Ei= —ViP EII= —VII'' —~A II/ai, (4)

with qI, A „-exp(-i&et —im6+in&). In this limit, the magnitudes of B and v~ are unaffected by the per-
turbation. We linearize Eq. (3) about an axisymmetric equilibrium. If we integrate the linearized
version of Eq. (3) over all velocities using d'v = 2mB d @de/v II

m. ult'iply by the charge e, and sum over
all species making use of the quasineutrality condition, we obtain a moment equation for j ~~:

no ~ Vj,I, +n, Vy„o+ge Jd'vv~ Vf, = —(i&un, m,. / ')B(1+ zp,.2)V~2Ip,

where p, =(m, T,)'"/eB. Ultimately, w.e w. ill combine Eq. (5) with the Maxwell equation V'A
II

= —4EjII,
to yield one relation between y and A „. This moment-equation procedure makes use of the quasineu-
trality condition to high order; accordingly relatively small effects, such as the beam contribution to

I
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the third term on the left-hand side and the fourth-derivative term, must be retained in Eq. (5). We
must proceed to linearize Eq. (3) to obtain the f„ for use both in Eq. (5) and in the lowest-order quasi-
neutrality condition. %'e must include a perturbation in the unit vector n, arising from the magnetic
perturbation given by

—i(uB~ = V &&(v~ &:8)—V &'(E ~~n) = (B V)v~+ n &: VE ~~, (6)

where we have made use of the fact that the magnitude B of the unperturbed field is approximately uni-
form. The linearized version of Eq. (3) can then be put in the form

S Ssfo 2 8 Bfo(- Au+ v „n V+ v~ V —C)(f, —vz Vf /i&) =-; V~ p - —(v,~E ~~

—vt, ~ Vy)eB' nz D

—"~~n~VE, ~. Vf -v V(v. Vf,).
Nd B (7)

Here, we have omitted the fourth-derivative term and have made use of the fact that the collision oper-
ator acting on v~ Vf, vanishes, at least in the absence of temperature gradients.

In the case of the electrons, we have co «k ~~v ~~. Thus, the terms in E
~~

dominate on the right-hand
side in Eq. (7), and to lowest order we have

v n V' f+ ~. o =-—v E o+. n&&VE .Vf.V~ Vfo 8 Bfo V
ii

t(d Pg 8 E $(dB II o. (6)

The second term on the right-hand side in Eq. (8) can be written as —&u.,/&u times the first term on
the right-hand side, and may thus be neglected since ao»~. , for the Alfvdn waves of interest. The so-
lution becomes

Proceeding to next order in oo/k „v ~~, we must include the terms in vD on the right-hand side in Eq. (7).
Again the term in Vf, ean be written as —~.,/&u times the term in Bfo/Be, and may be neglected. In
this order we obtain a solubility condition which determines g,(p, e), namely,

~

~

dl . e Bfo dl—(- i4P + v ' V —C)g
m ae v~~

(10)

For untrapped particles all inhomogeneous terms average to zero (k„g0), and we conclude that g =0.
For trapped particles, writing Cg = —v, ' g and assuming ~ »vD V', we obtain

—r fo ( iE dl)FVe 8g ~ j'p cf f ll

e

where (A) =—(~A dl/v „)(~dl/v, ~)
'.

In the case of background ions, we have (d»k ~~v ~~
and ~ » v, , and the solution of Eq. (7) is

leo 8B pB(d
(12)

The last term in Eq. (12) is smaller than the second term on the left-hand side by a factor r/R and
moreover, being proportional to cos0, tends to average out; accordingly, we will omit it.

Finally, we turn to the perturbed distribution function for the high-energy beam ions. For simplicity
we will take the beam distribution also to be Maxwellian with T~» T, , For a Fourier mode like
exp(in/ —im8), the right-hand side of Eq. (7) may be simplified, and the equation written

(- i~+ v iln' V+ v V)g =(&f /T )(1 —M. /N)(v ((E ((
—v Vp),

where &u.,= —(mT~/eBr)dlnn~/dr. In tokamak geometry, the particle drift has (r, 6) components given
by v~= [m,(2e —pB)/eBR](sin0, cos6). Also, E

~t
is small and resonance is only possible for ~ -k~v~

k ~~v g&&k ov~ so we will neglect the E
~~

term on the right-hand side of Eq. (13).
When we treat the eigenmodes in a sheared field, we will see that the beam resonance is only impor-
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tant in the region &u -k„v„&k„v~. The angular dependence of v„gives rise to terms like exp[in& —i(m
+1)8]. Beam resonances can then occur where ( =(nq —m (-1)v)(/qR for positive m and n. The usual
case of interest will be where k „(r) is an increasing function of r, since then there will be relatively
undamped Alfvdn waves occurring between r = 0 and r = r„where v =k „(r,)v„. Where v, now denotes
the maximum beam velocity (i.e. , the injection speed), the condition for resonance to occur will be
v, /vA& [nq(r, ) —m] [nq(r, ) —m+ 1] '. Noting that q(r, ) &q(0) and nq(0) & m (or else there would be strong
electron damping at the radius where k „=0), this condition on v„/v„is not too restrictive, especially
for n = 1, and me mill assume in what follows that it is satisfied. In this approximation, the resonant
beam term from Eq. (13) is

mifom~(2e —pB) cu. ~ (nq —m+ 1)v)),. e mcp
(14)

Next we apply the calculated distribution functions to the macroscopic equations. We first substitute
the electron and background ion distributions given in Eqs. (9), (11), and (12) into the lowest-order
quasineutrality condition, the beam contribution being negligible to this order. In Eq. (9), we write
f'E„d/=E))/ik((. In the case of interest, we will typically have (nq —m)8,„(1,where 6, ,„ is the turn-
ing point of a typical trapped particle. Accordingly, as a rough average, we may write (f E ((dl)= E/()

ik)) in Eq. (11)provided we introduce a factor (r/R)'" to take into account the number of trapped parti-
cles. Quasineutrality then gives

E „=—ik, ) (1 + (r/R)'"(u/((d + i v, '")]p, ,'V, 'q, (15)

where p,,=(m, T,)'"/eB, and E), = —ik)(('p+ i&@A„.

Finally, we combine Eq. (5) and V'A)) = —4')),. The beam contributes to the third term on the left-
hand side in Eq. (5); we obtain

b b 1, b p 2+ (16)

Using Eq. (6), and noting that 8j))0/8r = —(B/4mmr')(8/8r)(r'8k „/8r), the first two terms in Eq. (5) may
be combined and written as (-i/4nr')((8/8r)[k„'r'(8/8r)(A„/rk)))] (m 1)k))A()j. We are now in a posi-
tion to write down Eq. (5) as a relation between A „and (p, and to substitute for A)) in terms of (p using
Eq. (15). Changing from (p to a fluid-displacement variable $ = —m(p/rB, we obtain

8$ 1 8, , 8$ m' —1
(u'p, '( ~ i6), +——r [(d'(1+i') —(()„']—— [(u'(1+i') —(d„])=0,8r' 8r ef (17)

where &o„(r)=k(, (r)v„, 8= (r/R)'"&uv, ' (&d'

+ v,
" ') ', and q = (n, T, /n; m;(d'R') (1 —&u ~(, /&u).

In obtaining Eq. (17), we have kept only the term
8'$/8r4 out of V4$, and have put (d2=mA2 and T,
=T; in the coefficient of this term. 4

A complete solution of Eq. (17) is evidently dif-
ficult. We observe that away from the singular
layer around (d = &u& (ro), the solution will consist
of slowly varying solutions $, and fast-varying
(evanescent or oscillatory) solutions $&. We are
interested in the case illustrated in Fig. 1, where
the fast-varying solution is evanescent for x&x,
and oscillatory within 0 (r (~0. Considering the
solution only near the singular layer, we may
neglect the last term in Eq. (17), and integrate
once to obtain an equation for y= $', namely,
p (74 —i8)y" + (1+i' —&u A2/u2)y = const. The solu-

FIG. 1. Illustration of shear Alfven-wave eigen-
modes in a tokamak; ~A(x) =4~~(r)vA, $, are slowly
varying MHD-like solutions; (& are fast-varying eva-
nescent or oscillatory solutions.
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v, p, R mq(r, )
VA rb nq(ro) —m (19)

where pb= (m, Tb)'"/eB. Parenthetically, we
note that if 8f, /8v ~~' &0 then the condition ~ «u, b

is no longer required for instability.
In the limit u «co+& the condition for instability

becomes [in the case ~ » v, ' with v, "'= v,R/r
and v, = 2sne'lnA/m, '"(2T,)'"]

p, v, p, r "' 8 lnq ' q(r, )'
rb' v,rb' R 8r' nq(r, ) -m, (20)

where pb
——8wnbTb/B . In applying Eqs. (19) and

(20), we note that nq(ro) -m may be small, al-
though a singular surface where nq(r) =m must
not occur. Thus, the worst situation would be
where nq(0) =m, in which case nq(r, ) —m= mr, '
x&lnq/8r', this case is assumed in the discussion
below.

As typical parameters of a large tokamak with
intense high-energy injection, we take B= 50 kG,
n=10" cm 3, T =5 keg v 04 sec i z~ 3&&108

cm/sec (for 100-keV injection), vA =10' cm/sec,
p, =0.5 cm, R =300 cm, rb= 50 cm, and (8lnq/

tions that decay for x &e0 involve fast-varying
oscillatory solutions for 0 & r &x0. The condition
at x= 0 in the present slablike approximation will
be $= $"=0 (physically, E„=B„=0).The condi-
tion $"= 0 will apply to the fast-varying oscillato-
ry part of the solution; considering only this part,
we have a %KB condition

r0 2 1/2
(-', —i5) '" 1+it) — + dr=mp;. (18)

0

Marginal stability will occur when the imaginary
part of Eq. (18) is satisfied for &u real. We write
uz'- &uA'(0) +r' 8(uz')/8 r'. The marginal stabili-
ty condition is then (26r,'/7)8ln(&u„')/8r'+ t7 = 0.
Evidently, for (d &v~b there must always be un-
stable modes for small enough x0. Writing
81n(~„')/8r'= [2m/(nq -m)]8lnq/8r', and nb(r)
=(1 —r'/2rb')n, (0), the condition cu &m~b be-
comes

8r') '=10' cm'. The instability condition (19)
then requires r, &15 cm, and for p, =0.01 the con-
dition (20) requires r, & 30 cm. Thus, the beam
may be unstable, and anomalously flattened in
radial profile, over the innermost 15 cm. Quasi-
linear estimates indicate a small slowing down of
the beam during this flattening process in the
case 8f /8v t~' & 0. For transient distributions
where 8f /m8v „'-+f /E„simil ar critical values
of ~0 are found leading to beam flattening in ve-
locity within this radius. In the case of n parti-
cles in a reactor, we might have B= 50 kG, n
=10"cm, T =15 keg, v, =2&&10 sec ', v&=10
cm/sec (for 3.5 MeV), vA=10' cm/sec, pb=3 cm,
R = 600 cm, rb = 100 cm, and (8 lnq /8 r ') ' = 4 && 10'
cm2. In this case the instability condition (19) re-
quires ro & 80 cm, and for P„=0.01 the condition
(20) is then also satisfied; this represents a fair-
ly severe condition. The approximations used
might lead to errors of a factor 2 in xo so that
more careful study is justified in some cases.
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In the more general case vrhere the correction fac-
tors 1 —u„; e/~ are retained, Eq. (17) is modified as
followers: The dispersion function in the square brackets
becomes [~(~ —~„;)+i&u2g-~A2}, and the coefficient of
8 $/W becomes [~( -~~;) +4}}vA 7(1-i6)(~ -u+;)

&& ( —g~) ']p ~ith 7 =T,fT; ~


