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One expects the molecules to be incident on the tar-

get in various excited states primarily determined by
conditions in the accelerator ion source. The average
internuclear separation 70 will therefore differ slightly
from the value for the molecular ground state. The
curves shown in Fig. 1 were calculated with zp = 0.8
and 1.1 A and with Gaussian widths (fwhm) of 0.5 and
0.7 A for ( HeH)+ and D,+, respectively. For further
details, see the discussion by J. Remillieux, in Pro-
ceedings of the Fifth International Radiation Congress,
Seattle, Washington, 1974 (to be published).
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A previously developed theory of NMR in superQuid He is generalized to include re-
laxation effects. The physical mechanism envisaged is the relaxation of nonequilibrium
Cooper-pair concentrations in the different spin bands. The results should describe both
linear and nonlinear phenomena for all frequency regimes. The results for continuous-
wave linewidths disagree with those of Combescot and Ebisawa as to temperature depen-
dence.

If we assume, as is by now conventional, that
the A phase of liquid 'He is the ABM (Anderson-
Brinkman-Morel) state' and the B phase the BW
(Balian-Werthamer) state, ' then most of the gross
features of the dynamic nuclear magnetism in
both phases' can be understood in terms of the
equations derived previously' from a Born-Oppen-
heimer type of approximation. These equations
are equations of motion for the total spin S and
the vector T(n) [or d(n)] which describes the am-
plitude and axis of spin quantization of the Cooper
pairs at point n on the Fermi surface:

dS/dt = yS x k(t) + Ro/T(n)], (1)

dT(n)/dt = T(n) xH. (2)

Here K(t) is the external magnetic field (includ-
ing the radio-frequency field, if any) and Rz& is
the "dipole torque" and is a bilinear function of
T(n) and T (n) for whose specific form we refer
to Ref. 4. H is defined as —(BE/8S); in particu-
lar, in the case of longitudinal resonance, it is
the difference of the up- and down-spin chemical
potentials. To get a closed set of equations we
need to supplement Eqs. (1) and (2) with an ex-
pression for H in terms of S and X. In the ze-
roth-order adiabatic approximation used in Ref.

4 the system is taken to be always in equilibrium
for the given values of S and T(n); then (neglect-
ing for the moment the question of "susceptibility
anisotropy") the requisite relation is

H =7 k(t) —y2q-'S. (3)

The theory based on Eqs. (1)-(3) seems to be
reasonably successful in accounting for a variety
of phenomena observed in the dynamic nuclear
magnetism of the new phases. ' ' However, it
has the major defect that there is no point at
which relaxation is introduced. Experimentally,
on the other hand, very substantial effects of
damping and relaxation are seen, although it is
not always easy to disentangle intrinsic effects
from those which may be due to inhomogeneity of
sample orientation and/or rf field. A theory of
the damping of the cw resonance has been given
by Combescot and Ebisawa' on the basis of a ki-
netic-equation approach; however, the generali-
zation to nonlinear phenomena, though possible, '
is not trivial, and there may be, therefore, some
value in an attempt to set up a more intuitive,
less mathematically complex approach to the
problem.

In this Letter we attempt to generalize Eq. (3)
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so as to give a general theory of relaxation which
will apply equally to linear and nonlinear phenom-
ena. The resulting theory is only slightly more
complicated than the original zero-order adiabat-
ic approximation, and enables us to treat all fre-
quency regimes in a unified way. In the cw limit
the results, although similar in many respects to
those of Ref. 7, give a different temperature de-
pendence for the linewidths near T,.

To see the basic physical idea, let us for the
moment concentrate on the A-phase longitudinal
resonance in zero external field. This may be re-
garded as a Josephson-like phenomenon in which
the Cooper pairs tunnel between the up- and down-
spin bands under the influence of the weak, spin-
nonconserving, dipole force. 4 Imagine that we do
a thought experiment as follows: Starting from a
situation in which S is 0 but the T(n) are slightly
rotated away from their equilibrium configuration
around the z axis, for time 0&t&t, we allow the
dipole forces to act but switch off all collision
processes, while for t, &t& we switch off the
dipole forces (thereby enforcing rigorous spin
conservation) but allow spin-conserving collision
processes to occur. Since the normal component
is completely unaffected by the tunneling process,
the number of up-spin normal particles at t, will
be the same as at f =0 (and, of course, the same
as the number of down-spin normal particles).
On the other hand, a number of Cooper pairs will
have tunneled (say) from the down to the up band.
The up-spin band is therefore not in internal
equilibrium at t= t,: There are too many Cooper
pairs relative to the normal component. ' Conse-
quently, the field H = —&E/&S (the difference in
the up- and down-spin chemical potentials) is not
related to the spin polarization S by the equilibri-
um susceptibility X but by some "susceptibility
at constant normal component" y,: H = —y'g, 'S.
Now when for t&t, collision processes begin to
act, they will of course not change the total spin
(i.e., the total number of particles in each band)
but they will convert the surplus Cooper pairs in
(say) the up-spin band into normal particles, un-
til at t = the two bands are in complete internal
equilibrium and we have H= —y'g 'S, where X is-

the true equilibrium susceptibility. In the real
situation, of course, the dipole forces and the
collision processes act simultaneously, the lat-
ter with some characteristic relaxation time 7.
Then if co is the longitudinal resonance frequency,
we see that in the limit ~T -0 ("hydrodynamic"
limit) Eq. (3) is correct, whereas in the opposite
limit ~T -~ ("collisionless" limit) g should be

replaced there by g,. In the intermediate regime
H is relaxing between —y g, 'S and —y g S and
is therefore partially out of phase with S; it is
this which gives rise to damping.

Let us try to make this idea quantitative, con-
sidering now a quite general situation. Define a
vector S~ which represents the contribution to the
spin polarization "from Cooper pairs" (a precise
definition of S~ will be given below) and suppose
that in the limit of zero relaxation (S = S&) the field
H =——&E/Bs is related to the spin by H =yX(t)
—y'g, 'S, thereby defining the "Cooper-pair sus-
ceptibility" X,. Then define also a vector g by

11-=s,-s (s), (4)

where S~ is the equilibrium value of S~ for the
given value of S. (That is, 71 represents the ex-
tent to which the pairs are out of equilibrium with
the normal component. ) Evidently we have S~(S)
=(y„/~)S=A(T)S, where the subscript zero indi-
cates that the susceptibilities are not corrected
for Fermi-liquid effects (cf. below). Provided
that the small-field condition B«b/h is fulfilled,
we can take the field H to be a linear function of
S and q [and of course of the external field X(t)]:

H=yx(f) —us- pq.

By considering the case of complete relaxation
(g=0) and also the case of no relaxation (S~=S)
when we must get the result given above, we find

&=y X

p=y'" " =y'g, o
' (y=g, o/go). (6)

In obtaining the last form for P we assumed that
the Fermi-liquid effects on g, and y have the sim-
ple form X, '= y„'+-,'Z, g~ ', etc. [where y„,
—= —,'y'h'(dn/de) and 2, is the usual Landau param-
eter (=—4Eo')]. This is not necessarily strictly
true if higher Landau parameters are important,
but the error is likely to be small (and always
negligible near T,).

To complete the theory we need the equation of
motion of g. This has three terms: First of all,
q [like S but unlike T(n) ] represents a physical
spin vector and hence precesses around the Phys-
ica/ field, that is the sum of the external field
and the molecular field K~,&= —4Zoyp„o 'S. Sec-
ondly, there is a contribution from the dipole
torque; since the latter induces a change in S on-
ly through changing S~ (cf. above), the contribu-
tion to dq/dt is just (I —A) times that to dS/dt.
Finally, g will tend to relax back to its equilibri-
um value, namely zero; we shall assume that
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this relaxation is exponential with some lifetime
T(T) which is of the order of the normal-particle
lifetime. Taking all these terms into account we
find

Fermi-liquid effects (so that what is calculated
is X,o rather than X,) we find after a straightfor-
ward calculation

X„=-,'y'5'(dn/d6) [1-f(T)], (9)

dq/dt = q x(yk(t) —y'x '(-,'z, )s ]+
+(l-x)R, —q/T (7)

where f(T) is the function defined by Combescot
and Ebisawa'.

while a combination of (5) and (6) gives

H =y&(t) —y'x '[s+& '(x/x, )n]. (8)

Equations (7) and (8) replace (8) and, with (1) and

(2), are assumed to give a complete description
of the spin dynamics including relaxation. "

We must next determine the parameter A. occur-
ring in Eqs. (7) and (8). To do this we need a pre-
cise definition of the quantity S~. We will con-
sider first the ABM state and in particular the
case of longitudinal oscillation; then the vector
d remains in the x-y plane and S~ is along the z
axis. If we neglect the weak dipole forces, the
up- and down-spin bands can be considered sepa-
rately: Let us focus on a given pair of plane-
wave states (k&, - k&) in the up band. The space
associated with these two plane-wave states is
spanned by the four orthogonal basis vectors }00),
}10), }01), and }11), where for instance }10)de-
notes the occupation-number eigenstate in which
k& is full and —k& empty.

In BCS-type theories, the energy eigenstates
associated with the pair are the two broken-pair
states }10)and }01), and two orthogonal linear
combinations (ground pair and excited pair) of
l00) and 111)with amplitudes (u"„~, v&1) and (vk1*,
—uk~*), respectively. The coefficients u&~, v&1

are determined in the usual way in terms of the
gap 4B~ and the energy e-„~ measured from the up-
spin chemical potential p~. Relative to the ground-
pair state the broken-pair states have energy E&~

=(eBp+lb, &~l')"' and the excited-pair state 2EB~,
and in thermal equilibrium the occupation proba-
bilities are given by the corresponding Boltzmann
factors. The total number of particles in the up-
spin band (hence the total spin) is a function both
of the coefficients u], ~, vk~ and of the occupation
probabilities, and if p, t is changed (e.g. , so that
5p, t= —5p. ~«4) then both these factors must ad-
just in order to produce the new equilibrium. We
shall define S~ as the change in spin induced by
the change of u&~ and v-„~ (and u&1 and vB~) alone
without change of the occupation probabilities.
Noticing now that the field H —= —&E/&S is just (y, ~

—p~)/5, recalling the definition S~=—y 'X, H appro-
priate to the situation considered, and neglecting

(10)

Hence the function X(T) appearing in Eqs. (7) and
(8) is given for the ABM state by

X(T)ABM 1 f(T)

We notice that A. tends to 1 in the low-tempera-
ture limit, but near T, is proportional to (T,

T) 1/2

For the BW state we use the fact that for any
given point n on the Fermi surface with pair-
quantization vector d(n) defined in the usual way,
the contribution to p„must be a tensor quantity
of the form const[5;, Id(n)l' —d, (n)d, *(n)] (this fol-
lows because from its definition, g„has no con-
tribution from the normal component). After av-
eraging over the Fermi surface, we find the sim-
ple result

2[1-f(T)]X(T)Bw= 2+ Y(T)
~ (12}

[Of course, f(T) is not exactly the same function
for the two states since EB has a different form. ]
Note also that X/X, is simply (1+—,'Z, ) ' for the
ABM state and {1+—,'Z, [-', +

B Y(T)]j ' for the BW
state, where Y(T) is the Yosida function.

Equations (1), (2), (7), and (8) have numerous
obvious applications. There is space here only
to quote a few without derivation (we hope to give
a more extensive discussion elsewhere).

ere-resonance 2inesoidths. —In the hydrodynamic
limit (&uvT «1, ~~T «1, where u&v is the longitu-
dinal resonance frequency) we find results identi-
cal to those of Combescot and Ebisawa [Eqs. (9)
and (11) of Ref. 7], except" for an extra factor
of X ' [see Eqs. (11) and (12) above] in each case.
As a result we predict that near T, the longitudi-
nal linewidth behaves as (T,—T)'~' rather than
as' (T,—T). This seems to indicate that our as-
sumption about relaxation of the nonequilibrium
Cooper-pair concentration cannot be equivalent
to that presumably embodied in their Eq. (1).

Non2inear 2ongitudina2 resonance. —If 8 repre-
sents the angle of rotation of the vectors d(n) in
the x-y plane (or half the phase difference between
the up- and down-spin pairs)'" and Ev(8) is the
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dipole energy as a function of this angle, we ob-
tain"

very helpful correspondence.

e ~ ~ 1 ~ ~ + )2E 1 BE

This equation can be applied to either phase by a
suitable choice of the function En(0).

Relaxation in pulse type-exPeriments I.n—the
limit &u~«~~, e~r «1 (which should describe
most pulse experiments conducted to date) we
find that after a large-angle pulse the recovery
of the energy (when averaged over several Lar-
mor periods) is linear rather than exponential"
with an effective recovery time Ty ff given by

Ti,eff =+ i)i ~
I f = ~g &, (14)

1 —g

8 0

where I"
~~

is in fact the width of the cw longitudi-
nal resonance in this limit fcf. Efl. (13) above]
and n is a numerical factor of order unity. It
seems reasonable to assume that M„ the z com-
ponent of magnetization, recovers in a similar
way. Since I'~~ varies as (T,—T)"' near T„we
see that Ty ff ~H'(T, —T) "'. Very recently,
Corruccini and Osheroff" conducted systematic
pulse experiments and observed, in the A phase,
just such a linear relaxation of M„. however,
they found T, ,ff ~H(T, T) '. It —seems probable,
therefore, that the relaxation they saw was not
the intrinsic relaxation considered in this paper
but was, as they suggest, due to the inflow of
magnetization supercurrents from the unperturbed
region outside the rf coil, or to some other ex-
trinsic effect.
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