⁷Preliminary results from the Magnetic Detector Group of the Stanford Linear Accelerator Center-Lawrence Berkeley Laboratory collaboration at SPEAR (W. Chinowsky, private communication).

⁸B. Knapp *et al.*, Phys. Rev. Lett. <u>34</u>, 1040 (1975). Electroproduction has been observed at the Stanford Linear Accelerator Center and the two groups agree with each other (D. M. Ritson *et al.*, to be published).

⁹C. G. Callan and D. J. Gross, Phys. Rev. Lett. 22, 156 (1969).

¹⁰The same calculation can be done for two- φ production in NN collision. However, because of the φ mass being much smaller than the ψ mass $[m_{\varphi}^2 \simeq (\frac{1}{3})m_{\psi}^2]$, distinction between an elementary φ exchange and a Reggeized φ exchange is far less clear (different only by a factor of ~ 10 with $\eta_0 \simeq 2$), and no high-energy production data are available except for a loose upper bound indirectly set by a measurement of large-transverse-momentum muons. [J. A. Appel *et al.*, Phys. Rev. Lett. <u>33</u>, 722 (1974)]. The Reggeized φ of normal slope ($\simeq 1 \text{ GeV}^{-2}$) is fully consistent with this upper bound.

¹¹Appel, Ref. 10.

¹²The lepton pairs from single- ψ production do not seem to explain all of the excess. L. M. Lederman, Columbia University Report (to be published).

¹³Production of ψ has been observed very recently in *n*-Be collision at Fermi National Accelerator Laboratory [B. Knapp *et al.*, Phys. Rev. Lett. 34, 1044 (1975)].

ERRATUM

NEW THEORY OF COERCIVE FORCE OF FERROMAGNETIC MATERIALS. R. Friedberg and D. I. Paul [Phys. Rev. Lett. 34, 1234 (1975)].

We correct a factor of 4 error in our normalization of the defect parameter $W[(\alpha_1/\alpha_2) - (\beta_2/\beta_2)]$ to the material Fe-Si4%. The revised table given below improves the theory inasmuch as the expansion parameter, h, is now less that 0.06 for all materials. Further, page 1236, line 7 should read that the constants C_1 and C_3 have the values $-2HS_1$ and $+2HS_1$, respectively.

TABLE I. Values of the coercive force due to grain boundaries.	We assume the values $W = 6 \times 10^{-5}$	⁸ cm, α_1/α_2
=1.1, $\beta_2/\beta_1 = 0.85$, and $S_1/S_2 = 1$.		

Material	s ₁	$(\frac{1}{2})\beta_1$	$(\frac{1}{2})\alpha_1$	2δ ₁ - Domain	h	H _c -Coercive	Observed
	Magnetization	Anisotropy	Exchange	Wall Width	Expansion	Force	Coercive
		(ergs/cm ³ x10 ⁻⁵)	(ergs/cmx10 ⁶)	(cmx10 ⁶)	Parameter	(Oersteds)	Force
Supermalloy	630.	0.015	1.5	64.	0.0002	^a 0.0004	0.002
Permalloy	860.	0.02	2.0	64.	0.0002	^a 0.0006	0.05
^b Iron-Si3%	1590.	3.7	2.2	4.8	0.0009	0.2	0.1
Iron-Si4%	1570.	3.2	2.1	5.2	0.003	0.5	0.5
Nickel	485.	0.7	0.5	5.2	0.003	0.3	0.7
Iron	1707.	4.8	2.4	4.4	0.003	0.7	1.
Cobalt	1400.	45.	4.7	2.0	0.007	20.	10.
^C Alnico	915.	260.	2.0	^c 0.56	0.024	600.	600.
Co ₅ Sm	800.	1500.	2.0	0.24	0.056	9000.	10000.

^aFor these materials, the coercive force may be dominated by magnetostatic effects. In particular, for Permalloy, the rapid quenching of the disordered state should produce high stress fields and a Kondorsky-Néel-type contribution to the coercive force.

^bThis material is grain oriented. Therefore, we use $W = 2 \times 10^{-8}$ cm.

 c Modern theory suggests a spin-rotation mechanism rather than domain-wall motion for Alnico. We have used an effective anisotropy taken from theoretical estimates of the intrinsic coercive force.