COMMENTS

Quark Anomalous Magnetic Moment and ψ Particles

Avinash Khare Institute of Physics, Bhubaneswar 751007, India (Received 11 March 1975)

Various consequences of the anomalous current introduced to explain the production and decay of the newly discovered ψ particles are discussed. In particular it is shown that Adler's neutrino sum rule would be modified in such a way that it would not be consistent with the scaling behavior of the structure functions.

Recently, Das *et al.*¹ have proposed an interesting phenomenological model to explain the newly discovered ψ particles.² In this model the extreme narrowness of $\psi(3.1)$ is explained by the introduction of an extra additive quantum number which has been named "paracharge" (*Z*) and which is conserved in strong interactions. The production and decay of the $\psi(3.1)$ particle can be explained by coupling it to an anomalous vector current

$$[V_{\mu}^{i}(x)]_{anom} = (i\beta/2M) \delta[\bar{\xi}(x)\sigma_{\mu\nu}\frac{1}{2}\lambda^{i}\xi(x)]/\delta x_{\nu}, \quad (i=1,2,\ldots,15),$$
(1)

where $\xi \equiv (u, d, s, \chi)$ are the quartet quarks and β and M are free parameters. Here (u, d, s) is the conventional SU(3) quark triplet with Z = 0 and χ is an additional SU(3) singlet quark with Z = 1. Decay widths of $\psi(3.1)$ calculated from the above current seem to be in reasonably good agreement with the available experimental data provided $|\beta|/2M$ is taken to be 0.08 GeV⁻¹. It may therefore be worth-while to study other consequences of such an anomalous current.

It should be noted that some time ago the present author³ had in fact introduced such a anomalous current to study the consequences of quarks having anomalous magnetic moment. It is then clear that $\beta/2M$ is the quark anomalous magnetic moment. Thus in Das *et al.*'s model the production and decay of ψ particles is dependent on the intrinsic properties of the basic quarks. Some of the consequences of such an anomalous current are as follows:

(1) The total vector current is now given by the sum of the conventional and the anomalous pieces. Notice however that the vector charge $\int V_0^i(x) d^3x$ and the conserved-vector-current hypothesis remain unchanged since the anomalous current is chargeless and conserved by itself. Thus, Gell-Mann's charge-algebra, conserved-vector-current, partial conservation of axial-vector current approach remains unaltered. The density algebra will however be modified as follows [I am restricting the discussion to SU(3) generalization to SU(4) is straightforward]:

$$\begin{bmatrix} V_{0}^{\alpha}(x), V_{0}^{\beta}(y) \end{bmatrix}_{x_{0}=y_{0}} = 2f_{\alpha\beta\gamma} \left\{ \mathfrak{F}_{0}^{\gamma}(x)\delta^{(3)}(\vec{x}-\vec{y}) - \frac{\beta^{2}}{4M^{2}}\partial_{i}^{x}\partial_{i}^{y} [\mathfrak{F}_{0}^{\gamma}(x)\delta^{(3)}(\vec{x}-\vec{y})] + \frac{\beta}{2M}(\partial_{i}^{x}-\partial_{i}^{y})[T_{0i}^{\gamma}(x)\delta^{(3)}(\vec{x}-\vec{y})] \right\} + id_{\alpha\beta\gamma}\frac{\beta^{2}}{4M^{2}}\epsilon_{imn}\partial_{i}^{x}\partial_{m}^{\gamma}[A_{n}^{\gamma}(x)\delta^{(3)}(\vec{x}-\vec{y})],$$

$$(2)$$

$$\left[V_{0}^{\alpha}(x), A_{0}^{\beta}(y)\right]_{x_{0}=y_{0}} = 2f_{\alpha\beta\gamma}A_{0}^{\gamma}(x)\delta^{(3)}(\vec{x}-\vec{y}) + \frac{\beta}{2M}d_{\alpha\beta\gamma}\epsilon_{lmn}\frac{\partial}{\partial x_{n}}\left[T_{lm}^{\gamma}(x)\delta^{(3)}(\vec{x}-\vec{y})\right], \tag{3}$$

where \mathfrak{F}_0^{γ} is the isospin current. Since these commutators [especially the one given in Eq. (2)] have been used in a large number of places some far-reaching consequences are expected.

(2) The Adler neutrino sum rule⁴ is modified, the new one being given by

$$\int_0^{\infty} \left[W_2^{\overline{\nu}}(\nu, q^2) - W_2^{\nu}(\nu, q^2) \right] \nu^{-1} d\nu = \left[2 - (\beta^2 / 4M^2) q^2 \right] \cos^2\theta_c,$$
(4)

where, $W_2^{\nu,\overline{\nu}}$ are the well-known structure functions appearing in the deep inelastic neutrino scattering. Because of the presence of the q^2 term on the right-hand side, this sum rule is not consistent with the scaling of $W_2^{\nu,\overline{\nu}}$. This has to be contrasted with the various charm schemes⁵ where the alteration of the Adler sum rule is such that it is still consistent⁶ with the scaling of $W_2^{\nu,\overline{\nu}}$. It may be hoped that the data around $q^2 = 50$ GeV² may be able to decide between the paracharge and other models.

(3) The charge-density commutator which is usually believed to be zero is now not so and is given by⁷

$$[\rho(x), \rho(y)]_{x_0 = y_0} = \frac{2}{3} i (\beta^2 / 4M^2) \epsilon_{lmn} \partial_l^x \partial_m^y [A_n^3(x) \delta^{(3)}(\vec{x} - \vec{y})].$$
(5)

In view of the above modification of this commutator, the Drell-Hearn-Gerasimov sum rule⁸ (say for the proton) will be altered as follows:

$$(K_{p}/2M_{p})^{2} + (8\pi^{2}\alpha)^{-1} \int_{0} \left[\sigma_{p}(\nu) - \sigma_{A}(\nu)\right] \nu^{-1} d\nu = (\beta^{2}/12M^{2})g_{A}(0),$$
(6)

so that there must exist a fixed pole in the spin-flip Compton scattering.⁹ Obviously, the Cabibbo-Radicati sum rule¹⁰ will also be modified.

(4) In view of the modified commutator (3), Fubini *et al.*'s low-energy theorems¹¹ for neutral-pion photoproduction will need alteration. Similarly, the superconvergence sum rule for charged-pion photoproduction¹² will be modified to the extent that a fixed pole would occur in charged-pion photoproduction.

(5) In view of the above modifications, one can set an upper bound on the possible values of the quark anomalous magnetic moment $\beta/2M$. In fact, the Drell-Hearn-Gerasimov and Cabibbo-Radicati sum rules have been so well tested that they fix $|\beta|/2M < 0.1 \text{ GeV}^{-1}$. It is interesting to note that Das *et al.*'s rough estimate of 0.08 GeV⁻¹ is below and very close to the upper bound.

(6) Since the space components of the vector current are also altered, modifications in the Schwingerterm sum rule, the Callan-Gross relation, etc., are also expected.

Finally, in view of the above anomalous vector current one should also modify the axial-vector current. Such an anomalous vector current should have the form

 $[A_{\mu}{}^{i}(x)]_{a \to m} = i(\beta'/2M) \partial [\overline{\xi}(x)\sigma_{\mu\nu}\gamma_{5}\frac{1}{2}\lambda^{i}\xi(x)]/\partial x_{\nu}.$

It is amusing that this anomalous piece is nothing but the second-class axial-vector current whose presence has been indicated¹³ by the large asymmetry in ft values of the mirror nuclei. The consequences of such a current have already been studied by the author.¹⁴ Needless to say, Adler's neutrino sum rule is further modified.

It is a pleasure to thank Professor T. Pradhan for taking a close look at the manuscript.

¹T. Das et al., Phys. Rev. Lett. <u>34</u>, 770 (1975).

⁴S. L. Adler, Phys. Rev. <u>143</u>, B1144 (1966).

⁵M. A. B. Bég and A. Zee, Phys. Rev. D 8, 2334 (1973).

⁶The only modification is in the constant term on the right-hand side and there is no q^2 -dependent term.

⁷The presence of such derivative terms has been discussed earlier by A. Khare and T. Pradhan, Phys. Rev. D $\underline{8}$, 1863, 4654(E) (1973).

⁸S. D. Drell and A. C. Hearn, Phys. Rev. Lett. <u>16</u>, 908 (1966); S. B. Gerasimov, Yad. Fiz. <u>2</u>, 598 (1965) [Sov. J. Nucl. Phys. <u>2</u>, 430 (1966)]; M. Hosoda and K. Yamamoto, Progr. Theor. Phys. <u>30</u>, 25 (1966); K. Kawarabayashi

and M. Suzuki, Phys. Rev. 150, 1181 (1966); T. Pradhan and A. Khare, Phys. Rev. D 5, 496 (1972).

⁹H. D. I. Abarbanel and M. L. Goldberger, Phys. Rev. <u>165</u>, 1594 (1968).

¹⁰N. Cabibbo and G. Radicati, Phys. Lett. <u>19B</u>, 697 (1966).

¹¹S. Fubini et al., Nuovo Cimento <u>40</u>, 1171 (1965).

¹²M. B. Halpern, Phys. Rev. <u>160</u>, 1441 (1967); R. Musto and F. Nicodemi, Nuovo Cimento <u>49A</u>, 333 (1967); for de-

(7)

²J. J. Aubert *et al.*, Phys. Rev. Lett. <u>33</u>, 1404 (1974); J.-E. Augustin *et al.*, Phys. Rev. Lett. <u>33</u>, 1406 (1974); C. Bacci *et al.*, Phys. Rev. Lett. <u>33</u>, 1408, 1649(E) (1974); J. J. Aubert *et al.*, Phys. Rev. Lett. <u>33</u>, 1624 (1974); G. S. Abrams *et al.*, Phys. Rev. Lett. <u>33</u>, 1453 (1974).

³A. Khare, Tokyo University, Komaba, Report No. UT-KOMABA 74-14, 1974 (to be published).

rivation from pion source algebra see A. Khare, Progr. Theor. Phys. <u>51</u>, 1513 (1974).

¹³D. H. Wilkinson and D. E. Alburger, Phys. Lett. <u>32B</u>, 190 (1970).

¹⁴A. Khare and K. Kawarabayashi, Progr. Theor. Phys. <u>52</u>, 267 (1974).

Slope of ψ Regge Trajectories and a Test of "Elementarity" of the ψ Particles in 2ψ Production by Hadrons*

Mahiko Suzuki Department of Physics, University of California, Berkeley, California 94720 (Received 14 April 1975)

If the ψ particles are not Reggeons, the cross section for 2ψ production would rise to $\sim 10^{-32}$ cm² in high-energy hadron-hadron collisions. This is based on the observed photoproduction of a single ψ .

It is currently fashionable to assume the ψ particles^{1,2} to be loosely bound states of a quark and an antiquark of a new quantum number, in particular, charm.³ This is the most attractive model presently discussed by theorists since it can accommodate both the unified gauge theory of weak and electromagnetic interactions⁴ and asymptotic freedom of strong interactions.⁵ In the charm model with color gluons the potential is given by a Coulomb force plus a confining force at a long distance, so that a few charm-anticharm bound states of positive charge conjugation should exist most naturally below the first exited state (3.7 GeV) of ${}^{3}S_{1}$.⁶ However, no monochromatic γ rays have so far been observed from the $\psi(3.7)$ at SPEAR.⁷ Another problem is that in spite of an apparent threshold behavior at 3.8-4.2 GeV in $e^{+}e^{-}$ collisions, no charmed mesons have yet been found in the invariant-mass plot of either strange mesons or nonstrange mesons.⁷ Although these results have not yet been established at all firmly, it would not be absurd to give a little thought to the possibility that the ψ particles might be "elementary." By the word "elementary," I mean not only that the ψ particles at 3.1 and 3.7 GeV need not imply the existence of more of new states such as ψ of positive charge conjugation or charmed mesons, but also that the ψ particles may not lie on a Regge trajectory of a normal slope.

Very recently, photoproduction of a single ψ has been observed.⁸ Assuming that the production is diffractive, one can estimate that the total ψN cross section is about 1 mb at high energies. Given this number, one can test experimentally whether the ψ particles are Reggeons or not. One of the processes most suitable for this purpose is

$$N + N \rightarrow N + \psi + N + \psi \tag{1}$$

at small momentum transfers between the initial nucleon and the final $(N\psi)$. The ψ particles can be exchanged as shown in Fig. 1. The Pomeranchukon and ordinary Reggeons can be exchanged, too, but according to the narrow hadronic decay widths of $\psi(3.1)$ and $\psi(3.7)$ and also to the ψ production in the p-Be reaction² the process

$$(P \text{ or } R) + N \rightarrow N + \psi$$
(2)

is expected to be suppressed by a factor of ~10⁻⁵ as compared with (*P* or *R*) + $N \rightarrow N$ + (ordinary meson). The production cross section of 2ψ through *P* or *R* exchange would therefore be ~(10⁻⁵)²×(10 mb) = 10⁻³⁶ cm². If the ψ particles are elementary or, equivalently, lie on a flat trajectory, however, the ψ exchange would dominate completely in the process (1). It is the purpose of this short note to give an estimate of the 2ψ production through one- ψ exchange and to discuss its implications.

 2ψ production through elementary ψ exchange.—The production amplitude is given by

$$M = i(2\pi)^{4} \delta(p + p' - k_{1} - p_{1} - k_{2} - p_{2}) \left\{ -g^{\mu\nu} + \frac{(p_{1} + k_{1} - p)^{\mu}(p_{1} + k_{1} - p)^{\nu}}{m_{\psi}^{2}} \right\} \frac{1}{m_{\psi}^{2} - t} \times \langle \psi(k_{1})N(p_{1}) | J_{\mu}(0) | N(p) \rangle \langle \psi(k_{2})N(p_{2}) | J_{\nu}(0) | N(p') \rangle,$$
(3)