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cause the peak for 15 MHz (Ref. 4) is lower than
the one for 20 MHz (Ref. 12) by a factor of ~3.
Similar calculations for the axial state (A phase)
are in progress.
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A systematic kinetic-theory treatment of the interaction of electrons and ions with in-
tense high-frequency localized electrostatic fields is formulated. A generalization of the
familiar nonlinear Schrodinger equation includes nonlinear Landau-damping effects which
prevent soliton collapse. An analytic calculation predicts a heated-electron distribution
behaving asymptotically as exp(—v/v,) (v,=e8/4mw,) and modulated in the region near
the localized field to form streamers in phase space.

Intense, localized high-frequency electrostatic fields appear to be a general feature of strong electro-
static plasma turbulence.! Numerical studies of resonance absorption of electromagnetic radiation on
an inhomogeneous plasma have shown the existence of intense electrostatic field spikes at the critical
density [w,=w,(x)].? Numerical studies of the driven nonlinear Schrédinger equation (NLSE) by Mora-
les, Lee, and White have also shown the evolution of intense electric field solitons which, if pump de-
pletion is neglected, collapse to zero spatial extent.® Recently Valeo and Kruer* presented results of
numerical simulation which demonstrated the obvious importance of wave-particle interactions in sta-
bilizing solitons. Their calculations and a numerical calculation of Morales and Lee® show that signifi-
cantly heated electrons are produced to form high-energy tails in the distribution function. In the pres-
ent paper we obtain an anralytic description of the complete electron-velocity distribution function in
spatial regions both inside and outside the electric field spike. This description is essential for the
correct treatment of Landau-damping corrections to the NLSE which stabilize against soliton collapse.
Our work and previous work!?® ™ is restricted to one dimension.

For this problem we have found it convenient to transform the usual Vlasov equation for f(v,x’, f) to a
localized oscillating coordinate frame where v=u+uy(x, #) and x’ = x+ x y(x, ) with uy(x, t) =- (e /m)

X [* dtE (x,¢) and 8x,/8t=uy(x,?). Here E4(x, ) is the localized high-frequency electrostatic field,

Ey(x, D =3[8,(xDexp(—iwyt) + 8,*(xexp(iw,d)]; (1)

i.e., 6,(x, ) is the envelope of the soliton. If f(v,x, #) satisfies the usual Vlasov equation with total
electric field E o(x, ) =Ey(x, ) =E(x, ) +E (x, H), where E is a low-frequency field, then a new func-
tion F(u~uy(x,d,x —x4(x, H); t)=f(u, x, t) is readily seen to satisfy the equation

LF(v,x, 1) — v(du,/0x)0F/0v=0, £=(8/8¢) +(vd/8x)[(e/m)E  ++% du,?/dx](8/0v).

In Eq. (1) we have assumed 8x,/8x <1 and E 4(x+ x p, £) E4(x, f); i.e., we assume throughout this pa-
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per that the excursion distance x ,(x, ¢) is small
on the scale of spatial variations of interest. It <
is clear from the form of nonlinear terms in this (@ // \\E (x)
equation that F(v, x, f) must have a high-frequency VO
part (at w;) and a low-frequency part: F(v,x, {)
=Fy(v,x, D) +F (v,x,1. If we average Eq. (1) over
the fast-time scale we obtain

(LYF, ={v(duy/8x)0F ;/0v). (2) N
We subtract (2) from (1) to get the fast-time- ! 7 X
scale equation :
dé,
r
LF ,=v(8u,/0x)0F /0v. (3) 1kn
|

The angular-bracket notation denotes the time
average over a period T =27/w, of the high-fre- (b)
quency field, Thus (u,%(x, £)) =€ 8,(x, HI1*(2m®
Xw,?) "1, The characteristics of the homogeneous
equation for F'; describe particles moving in an
effective low-frequency field which is the sum of \‘}
(e/m)E =~ (e/m) V¢ and the ponderomotive force
30Uy > /0x.

The low-frequency electrostatic potential satis-

J—
]

)

L V X
fies\ Poisson’s equation driven by the low-frequen-

cy density. The ion distribution function will be

assumed to obey the ordinary Vlasov equation FIG. 1. (a) Schematic shape of soliton. (b) Phase-
with only the self-consistent low-frequency field space trajectories.

E ;. To obtain the equation for the high-frequen-

cy field we note that the high-frequency current is Jy(x, ) =e [du|uF 4(u, x, t) +uy(x, ) F (u,x, £)] and we
obtain for the slow-time variation of the envelope function §,(x, #)

v

] g,_(x)

2w, 88,/0t +3v,2 028,/8x2 + (w2 — 41e?/mn ;) 8, = Im|~ 471e(8/d0) | dvvF,,], (4)

where n(x,#) = | duF (u,x,1). The source term on the right-hand side will include Landau-damping
effects.

Since we wish to focus on the time dependence of Fj proportional to exp(— tw,f) we can replace u,%(x,
#) in (3) by u,*(x, £)), neglecting components which arise at + 2w,. Then we can formally solve (3) by
using the Green’s function of the homogeneous equation. We substitute this in (2), write uy(x, ) +3u,(x,
Dexp(—iwyt) +c.c., where u(x, t) =e8,/mw, is slowly varying in ¢ as is F(v,x, ), and carry out the
average over the fast-time scale as indicated in (2) to obtain for v>0

8F /08t +v 8F [ /8x —m™Y8/08x)(~ e +mu,2/4)dF . /v =vS(x, v), (5)
8(x, v) = 50(0uy/02)(8/80) [ (auty> o5 cOS[wo T, 2V (8/8)F (2", v(x, x))ouy(x") /0x". (6)

Here T,(x,x’) is the transit time of a particle between x’ and x starting at x’ with velocity v’. Now v is
the velocity at x of a particle starting with v’ at x’ in the total potential — e +mu,2/4 = 3mv (%) so that
v =v(x,x") =[v? +v,X(x) = v,2(x") ]2 The total potential - e¢,, = 3mv,2(x) determining the orbits is re-
pulsive and as shown in Fig. 1(b) the orbits separate into those which reflect from the potential and
those which pass through, The choice of positive square root for v or v’ in the expressions above ex-
plicitly limits us to electrons which pass through the potential. We assume that at large distances
from the soliton the distribution is given—for example, a Maxwellian. The right-hand side is a spa-
tially dependent diffusion term in velocity space which produces heating of the electrons as they stream
through the soliton. The effect of the diffusion term on reflected particles can be handled similarly but
will not be treated explicitly here. In steady state (8F./3¢=0) we can formally solve (5) in the case v

1382



VoLUME 34, NUMBER 22 PHYSICAL REVIEW LETTERS 2 JUuNE 1975

>0 in the form
Fi(x,v) =fuv? +v 2(x))V2) + f_:dx’ S(x’, [v2+ v A x) - v A(x")]V?), )

where vS(x, v) is the right-hand side of Eq. (5) and fy(v?) =f, exp(— v2/2ve?) is the Maxwellian distribu-
tion at x =— ., In the region v {x) #0 the Maxwellian has v? replaced by v®+v%(x) and the density is
locally reduced by exp[- v,2(x)/2v,2]. We will look for steady-state solutions of Eq. (2) and make the
static-ion approximation.”® Poisson’s equation and the assumption of quasineutrality then lead to the
following relation between the low-frequency electrostatic potential and the ponderomotive potential:
V2=T (T, +T;) u2/2.

We also assume that d§,(x)/dx is localized near x =+1/2, envisioning shapes of §,(x) as shown in
Fig. 1(a). The potential energy 3mv,*(x) will then have a similar shape provided the jumps occur over
regions several Debye lengths wide to preserve the quasineutrality assumption. Provided the other
quantities in the integrand of (6) vary relatively slowly in x’ we then use the approximation du,/dx
=y 6(x +1/2) -~ 6(x —1/2)] to perform the integrations over x and x’. If [, is the width of the step re-
gion of the soliton the conditions of validity of this approximation are that x ; ¥ u#,/w, <1, <v/w, since
v/w, is approximately the spatial period of the oscillatory factor cos[w,T(x,x")]. For v>0and x <~1/
2 the distribution is Maxwellian as assumed at x =~ »; i.e., F;(x,v)=f(v?, v>0and x <-1/2. For x
> —1/2 the distribution is altered by interaction with the soliton and we obtain the following equations:

Fi(- 31, 0) =fm(v? + 30,2 +0,2 02F (= 31, v) /802, x =—3I; (8a)
Fi(x,v) =fu(v? +00) +40,2 82F (- 31, v) /80v%, — §l<x <3}l (8b)
F(31, v) =fu(v® +30.2) +4v,2{(8/80)[1 = cos(v,/v) |oF (- 31, v) /8v} + v 2 82F, (51, v) /002, x =3I; (8c)
Fi(x,v) =fu(v?) +4v,2{(8/00)[1 = 2 cos(v,/v) |JoF (— 31, v/dv} + v, 62F (41, v) /802, x> 1iI; (84d)

where vy=u,/4=e8 /4mw, and v,=lw,. We have only to solve the second and fourth of these equations
with appropriate boundary conditions. We have taken v/2(+ 3l) = 30,2, where v is the maximum value
in —=1/2<x <l/2.

The solutions of the homogeneous equations are of the form exp(+ v/v,). One boundary condition is
that F(x1/2,v) -0 as v —~,

The second condition is obtained by examining the low-velocity behavior of Eq. (7) where v <l w,.
Here the integral term in (7) tends to vanish since
the cos[w,T(x,x")]in S(x’, v) [see (6)] oscillates
very rapidly. The particular solutions of Eqs. (8) [ T T I T
which go continuously into the correct solution
for small v can be shown to be that for which 8F/
dv(x1/2,v) =0 at v=0. Exactly similar results A
for large negative v are obtained by considering
those trajectories originating at x =+, The only
change is to reverse the directional sense, e.g.,
1/2~-1/2.

These results are valid for u,«<l,0,<v. Ina
typical simulation result /,w,~5v, and u,~v,. For
low velocities v «</,w, the heating effect vanishes
as we have discussed and the distribution is just
A%, v) =fu@® +v2(x)). If uys v, the bulk of the
distribution function has this form and the elec- -3
tron density n,(x) is still given by n,(x) exp[-m
Xu,(x)/T,+T;] to terms of order u,/l,w,. In
Fig. 2 we plot F;(x, v) for x >1/2 for various val-
ues of v,/v,. Here we have T,> T; so that v}
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=u,?/4. An approximate but accurate formula for
F;(x,v) for x >1/2 (v>0) which neglects some os-

FIG. 2. Electron velocity distribution F;(x,v) for x
>1/2, v>0.
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cillatory terms of order v/v, when v < v, but which is valid also for v> v, is found for u, < w,l, <v:

Fi(x,9) =039 +4(v,/v) {[A(v) /v, ~ v,/v, = 20,/V JE(v,/vy = v/v,) + (v~ = v)})

=4(21)Y2(v,/v,) ¥ u(0) expl3(v,/v)? = v/v,]A(v) /v, for v>v,2/v,,

(9

where
E(x) =(imY2exp(:x?erfc(x/V2), A(v)=v(1-cosv,/v) - Si(v,/v) +310,/v;

erfc is the complementary error function, and Si the sine integral function. This exponential depen-
dence on v for large v is often seen in simulations.?® The dashed intermediate-velocity portions of Fig.
2 are sensitive to the detailed shape of the soliton and have been treated only qualitatively. The condi-
tion of zero net current [ dvvF (x,v)=0 (x >1/2) implies that F,(x, v) must cut below f4(v? in this
region to compensate for the current in the high-velocity tail. This notch in the distribution appears

in phase-space plots from computer simulations.*

The gain in electron kinetic energy is exactly balanced by loss of energy from the high-frequency
electrostatic field. This is accounted for by the term on the right-hand side of (5). If we solve for Fy
in terms of 8F;/8v by using the Green’s function solution it can be shown that the result is equivalent
to adding the following term to the left-hand side of the NLSE:

if dx' Qx,x",{8,)98,(x")/0x", . (10)
where
Qx,x",{8,)) =(41e?/m) [  dvvsin[w,T(x,x")]oF (x", v)/ov (11)
T, (%x")>0

and T,(x,x’) is, again, the transit time from x’ to x starting with velocity v. The linear Landau damp-
ing is obtained in the limit §,~0 where T (x,x’) =(x —=x')/v and F (v) =fm(v?). Q(x,x’,{8,}) can be
evaluated by use of T,(x,x’)=(x —x’)/v and the asymptotic result

F(x,v) =2(2m)"%(v,/v,) expl3(v,/v,)* = v/v,1/11(0) (12)

for —3l<x’<3l.

Q(x,x’,{8,}) is a decaying, oscillatory function of (w,lx —x’l/v,)*2, If the range of Ix —x’l in the in-
tegration of Eq. (10), which is essentially /,, the width of the peaks in 36,/8x, is large compared to
this spatial periodicity then the oscillations of the integrand will wash out the integral leaving a small
damping <w,. However as the width of the soliton becomes comparable to v,/w, there are fewer os-
cillations of the integrand and a large damping results. Thus this damping stabilizes the soliton against
spatial collapse.

The asymptotic behavior F; -~ v exp(- v/v,) for x >1/2 and v>> v, does not appear to be sensitive to the
detailed shape of the soliton nor does the qualitative feature of phase-space streamers for v ~w,l,.
The self-consistent determination of the soliton shape including Landau damping appears to require
a detailed numerical solution of the modified NLSE.

We wish to thank Dr. D, W, Forslund and Dr. M. V, Goldman for interesting discussions concerning
this problem,
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