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Near the critical point of a Quid or fluid mixture, we postulate the existence of a size
distribution of diffuse droplets or clusters of molecules. This distribution is combined
with the Rayleigh-Debye scattering approximation and the theory of Brownian motion to
describe the observed behavior of the intensity and the autocorrelation of light scattered
by critical Quids.

Results of recent intensity autocorrelation ex-
periments' for light scattering from a system of
diffusing Brownian particles characterized by a
finite-width size distribution (polydisperse sys-
tem) indicate that a marked similarity exists be-
tween the k dependence of the observed diffusion
rates of these systems and the diffusion rates of
fluids near critical points. Here k = (4'/X) sin —,8,
where n is the index of refraction of the medium,
X is the wavelength of the incident light, and 8 is
the scattering angle. This k dependence results
from the strong sensitivity of the Mie scattering
intensity' to particle size, when the scattering
particles are comparable to, or smaller than,
the wavelength of the light. As the scattered-
light wave number is reduced, the larger parti-
cles scatter a greater portion of the light com-
pared to the smaller particles. The diffusion
constant, inferred from the intensity auto corre-
lation of the scattered light, represents an aver-
age over the diffusion rates of all the particles
in the system meighted by the particle-size-de-
pendent scattered-light intensity. The diffusion
constant associated with a microsphere of radius
l is given by the Stokes-Einstein relation D =kBT/
Srql, where kB is Boltzmann's constant, T is the
absolute temperature, and g is the shear viscosi-
ty of the medium. In an autocorrelation experi-
ment on a polydisperse system, the dominant con-
tribution of the larger particles at small k is re-
duced as the scattering angle is increased, and
one would expect to measure an average diffusion
rate which increases with increasing k.

Such a k dependence is indeed observed in a
suitable polydisperse system of Brownian parti-
cles, and also in a fluid near its critical point.
Specifically, a good experimental fit to the data
for Quids in the critical region is given by the
following diffusion rate D&, or linewidth r„"

where $ is the Ornstein-Zernike correlation
length and q, is a parameter determined by a
best fit to the data.

In analogy with polydisperse systems we pro-
pose a new model to explain this k dependence of
the Rayleigh linewidth near the critical point.
We assume that the critical order-parameter
fluctuations may be thought of as clusters of mol-
ecules diffusing like Brownian particles in a host
Quid characterized by a normal background vis-
cosity. These clusters are assumed to have a
spherically symmetric density distribution which
we take as Gaussian. By the Lorentz-Lorenz
relation this implies that the index of refraction
mill also correspond to a Gaussian distribution.
Finally we assume that the clusters are polydis-
perse in size because of the statistical nature of
the fluid. This last assumption, along with the
Mie theory, provides the k dependence. While
the exact nature of the size distribution will af-
fect the quantitative results of our model, it is
important to realize that any reasonable size dis-
tribution will produce a qualitatively correct k
dependence.

The particle-size distribution we use is given
by

N(l) =Bexp(- P/2&')/l" ",

where 8 is an approximately temperature-inde-
pendent factor related to the density of the fluid,
g is a parameter which will be seen to be identi-
cal to the Ornstein-Zernike correlation length,
and q is a variable exponent to be identified later
and not to be confused with the symbol for shear
viscosity. The general form of this distribution
is similar to that used for static droplet models
of critical phenomena. "

For the Gaussian index-of-refraction distri-
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bution of the diffuse spherical clusters we take

m2(x, l) —1= 2[m(r, l) —1]=A exp( x—2/l2), (3)

where m(r, l) is the relative index of refraction
of the cluster to the average background index of
refraction, A is a measure of the deviation of the
index of refraction and is the same for all cluster
sizes, and r is the distance from the center of
the cluster.

To calculate the scattered intensity, the Ray-
leigh-Debye theory' is employed because it has a
simple analytic form and is a good approximation
of the exact Mie theory for the range of cluster
sizes and index of refraction differences expected
in critical phenomena. Thus the light scattered
at a given wave vector k by a single cluster with

I

index of refraction profiie m(2, l) is given by

I(l,k) =(ko /32n2Il2)! Jd2~[m2(y, l) 1]g&21'!2 (4)

I(l, k) = (A'k, 'l'~/32Il2) e~(- k'l'/2). (5)

Assuming single scattering from clusters, the
total light intensity scattered by our dispersion
is found by using Eqs. (2) and (5) to be

for incident light polarized perpendicular to the
plane of incidence, where the incident intensity
is unity, and R is the distance from the scatterer
to the point of observation. Here k, =2nn/A, . For
our choice of m(r, l), Eq. (3), the scattered inten-
sity from a cluster of size l becomes

I(k) = JN(l)I(l, k)dl = (42Ba, rr/32R')(k2+ $ ') "~"&(2 —q)D „„(0),
where I' is the gamma function and D~ „is the parabolic cylinder function of order 2 —q. For small g,
I'(2 —7l)D „„(0)=1. Thus, we write

I(k)=A Bk n/[32R'(k +$ )' " ']

! where D is the average diffusion constant. Eval-
uating the time derivative at t =0, we have

(10)

J, d/N(l) I(k, l)k k2T/6wq, l

J"alN(l) I(k, l)

This is the Fisher-corrected Ornstein-Zernike form for the light intensity scattered from a critical
Quid. The critical exponent p comes in through our size distribution, Eq. (2). If the cluster-size dis-
tribution is cut off at atomic sizes, the value of 8 can be shown to be essentially constant as T, is ap-
proached. Thus, the model correctly predicts this experimentally verified form.

To calculate the results for dynamical critical phenomena, we assume that in first approximation the
droplets Bct as physically hard spheres of radius l and execute Brownian motion without growing or de-
caying appreciably during the measured decay time. The result for photon-correlation spectroscopy
on a dispersion of single-sized hard spheres is given in the literature, and is easily generalized to
encompass a size distribution':

(E(0N*(t)) J„dlN(l) I(l, k) exp(-k&Tk f/Sng, l)
(E(0)E+(0)) J dl N(l) I(l, k)

where E is the scattered electric field, E* is the
complex conjugate of 8, and kBT/6~@, l is the dif-
fusion constant for a particle of size l moving
through a background composed mostly of small
or atomic-sized particles as indicated by the
form of N(l), with a background viscosity q, .

Since the average correlation fact'on ls a sum where r ls the average llnewldth. Applying Eq.
of exponentials, it is not in general an exponen- (10) to Eq. (8) we have

tial. However, experimental work' has shown
that it is nearly exponential, and a reasonably (11)
good value for the diffusion rate can be deter-
mined by looking at the slope of the correlation
function near t = 0. To express this mathematical-

From Eqs. (2) and (5)

(Z (0)Z *(t))
(E(0)E*(0)&

Dk2 B k2(k2+ (-2)1/2 ( 7) -1+ 7l( ) (12)
1 (2 —n)D (o)-

When the coefficients are evaluated near q = 0,
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the average diffusion rate reduces to

x/2
Dk2 P B k2(1 ~k2(2)1/2

2 6mrl, g

kDA, (13)

Except for a numerical factor of order unity, this
is identical to the experimentally fitted result of
Eq. (1).

ln deriving Eq. (13) we have assumed that the
experimental determination of the decay time of
the scattered-light correlation function is a fit to
the t-0 part of the spectrum. We have performed
computer calculations of Eq. (8) and found the dif-
fusion rate to be given approximately by I yl, =

=D„, k'= 0. 88 D(k, )) k' at the 1/e point of the nor-
malized field correlation function.

For g-0 one can Fourier transform the time
variable in the field correlation function. The
resulting line shape, S(~), can be determined
exactly as

D(k, $)k2 1 D(k, $)k D (k, $)k D(k, $)k (14)
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FIG. 1. Linewidth data for 3-methylpentane-nitro-
ethane mixture (Ref. 10), divided byk (0 +$ )' and

plotted as a function of &(. The theoretical curve is
for y=1 and q~=0.400 cP.

where erfc is the complimentary error function'
and co is the frequency. The half-width of this
line-shape function is I'», = (0.96)D(k, $)k'. Sur-
prisingly this line-shape function can be fitted
quite well by a Lorentzian escept in the wings,
where it decays more slowly. However, shot-
noise corrections could have masked this non-Lo-
rentzian behavior from experimenters.

In general the measured diffusion rate or line-
width will be given by I' =Dk'=yD(k, $)k', where
y is a number of order unity depending on the
method of analysis used. For y =1 this diffusion
rate or linewidth is identical to Eq. (1) if j,/p,
=1.18. Data presented in the article by Swinney
and Henry' has been fitted by Eq. (1) and the ratio
of g, to the extrapolated background viscosity g„
is determined (a summary of results is included

! in Table VII of their article). An example of the

theoretical fit to the data of Chang et al."is in-
cluded in Fig. 1. The agreement between our
theory and experiment is seen to be quite good,
especially if we are not restricted to @=1. It
should be noted, however, that a background sub-
traction, ' related to the Rayleigh line in the non-
critical fluid, has been made for the pure fluids
before fitting by Eq. (1).

In this Letter we have presented a simple mod-
el which is used to interpret light-scattering ex-
periments on critical fluids. We have assumed
that clusters of molecules exist in the fluid, that
these clusters grow in size as the critical point
is approached, and that they execute Brownian
motion. The Rayleigh-Debye approximation is
used to calculate the scattered intensity from a
single cluster. This intensity is then combined
with the cluster-size distribution and then with
the theory of light scattered from a particle ex-
ecuting Brownian motion to find the scattered in-
tensity and the Hayleigh linewidth. The agree-
ment with experiment seems to be within experi-
mental error limits.
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Using a novel diagrammatic perturbation-theory approach, it is found that the dynamic
structure function of quantum fluids at high frequencies is independent of quantum statis-
tics, depends only on the interparticle potential, and has a long tail as a function of fre-
quency In p.articular, it is found that the fifth and higher frequency moments diverge in
cka~ged quantum systems. This is demonstrated to hold in general by an investigation of
the fifth-moment sum rule.

A function of central importance in the descrip-
tion of many-body systems is the dynamic struc-
ture function, S(k, &u), which represents the max-
imum information that can be obtained from the
linear response of a system to a density probe,
e.g., a neutron-scattering experiment. ' At zero
temperature, S(k, &u) is defined as the positive-
frequency spectral function of the density re-
sponse function E(k, u&} by'

S(k, &u)=-m 'ImE(k, ~), &u~ 0,
where

E(k, m}= —i f dte' '{[pk (t), pgt(0)]) g(t). (2)

In Eq. (2) the brackets {.. . ) denote the ground-
state average and pk is the density operator. In-
elastic scattering of neutrons on superfluid heli-
um reveal' that in analogy to the classical fluids,
S(k, u), considered as a function of m at fixed k,
decreases continuously with a long smooth tail
at large ~. Recently some progress has been
made in calculating S(k, e) in the high-frequency
limit for classical systems, ' but there does not
exist a general result for quantum fluids.

In this Letter I describe a unified diagrammatic
approach for the calculation of the dynamic struc-
ture function of both Fermi and Bose fluids at
zero temperature. It is based on an idea original-
ly put forward by Brandow4 and extended by I ee, '
that a condensed Bose gas may be regarded as a
fictitious Fermi gas with spin degeneracy equal
to the total number of particles. This procedure

allows us to write down the same set of diagrams
for any quantum many-particle system and to let
the quantum statistics of the particles enter only
in the final stage of the actual calculations. In
contrast to the usual Green's-function formula-
tions, my approach enables us to achieve pertur-
bation approximations which obey local number
conservation and related sum rules.

I find from examining low-order diagrams that
in the high-frequency limit, the dynamic struc-
ture function of quantum fluids (I}is independent
of quantum statistics of the particles, (2) depends
only on the Fourier transform of the interparticle
potential, and (3) can have a long smooth tail at
fixed 0 as a function of ~. This high-frequency
tail implies that the higher moments of S(k, &u)

are divergent in certain quantum systems. I find
that aside from the general result of Kleban' for
the divergence of the third frequency moment for
hard-core potential, the fifth and higher frequen
cy moments diverge for charged quantum fluids. '
I show that this result is general and independent
of perturbation theory by presenting some argu-
ments based on the fifth-moment sum rule. '

The density response function E(k, a&) can be
expressed in terms of the proper polarization
part II (k, &u) by

E(k, a&} = II (k, &u)/fl —v(k)II (k, e}],

where v(k) is the Fourier transform of the inter-
particle potential. An exact calculation of the
polarization part is clearly impossible at the mo-


