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COMMENTS

Comments on a Solution of a One-Dimensional Fermi-Gas Model
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{Received 23 December 1g74)

A recent solution by Luther and Emery of a one-dimensional interacting Fermi-gas
model contains a Qaw in its final step which when corrected yields qualitatively different
behavior. In particular spin-density wave and triplet superconducting pairing excitations
are not divergent. The result is consistent with a gap in the uniform spin susceptibility
and the gap can now be given a simple physical interpretation. The bulk of the Luther-
Emery solution including exponents for the charge-density wave and singlet pairing re-
mains correct.

Recently Luther and Emery (LE)' have produced a remarkable solution of a model for a one-dimen-
sional interacting Fermi gas. The model is an extension of the Luttinger or Tomonaga model to in-
clude spin as well as scattering from +kF to —kF. The Hamiltonian is written as H=Ks+HI, where Hs
is the usual Luttinger model,

H~ = v„Q k(a», ta», —b», b», ) +2L 'P Vp, (k) p, (- k),

where a», (b„,) describes spin-& fermions with momentum k (-k); p, (k) and p, (k) are density opera-
tors,

px(k) = 2 Z s»+». s s»»
ps

and

p. (k) =2 '"Z b»+», .'bp. .
ps

The large-momentum-transfer terms are described by

H, =g fdx4„'(x)4„.t(x)'4„(x)4', ,(x)[U b, , +U b, ,], (2)
ss

where 4„(x)= I '"P»exp(ikx) a», and 4„(x)= L '"P» exp(ikx) b„, Aspec. ial case of this model, g,=—U)) =U~, has been investigated by Menyhlrd and S61yom' and recently extended by Fukuyama, Rice,
Varma, and Halperin using the renormalization-group method. For g, negative they find that the sus-
ceptibilities for charge-density wave and for singlet superconducting pairing diverge and that the uni-
form magnetic susceptibility goes to zero. LE solved the model for one particular value of U~~(2mv~)

The most striking feature of their solution is that they find an energy gap in the spin degrees of
freedom and consequently the uniform magnetic susceptibility is exponentially activated. At the same
time their low-temperature solution does not distinguish between spin singlet and triplet. They find
that the susceptibility for spin- and charge-density waves behaves like co" for small ~ and singlet and
triplet superconductivity like ~" . For V(2mvF) ' &0 they find p & 0 and p,

' &0 indicating simultaneous
charge- and spin-density wave instability, and iL' &0, p &0 for V(2mvF) ' & —-', indicating simultaneous
singlet and triplet superconducting instability. This contradicts the result of Menyhlrd and S6lyom'
which admittedly is not rigorous for g, &0. Et is the purpose of this Comment to point out an error in
the last step of the LE argument which, when corrected, indicates that spin-density wave and triplet
superconductivity responses are not divergent. The bulk of their remarkable solution, including the
exponents p. and p,

' for charge-density wave and singlet pairing, are still correct. Their result on the
conductivity which is based on the charge-density-wave exponent alone also stands.

I first outline the steps in the LE solution to establish notations. Using the Mattis-Lieb' replace-
ment of the kinetic energy term LE showed that H can be decomposed into charge-density and spin-
density components, i.e., H=HO+H, where [HO, H, ]=0 and

Ho= 2mvFI 'Q»[p, (k) p, (- k) +p2(-k) p, (k)]+I 'Q» (2V —U,~) p, (k) p, (-k)
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H, = 2mv ~L 'Q, [o,(k)o, (- k) +o, (- k) o, (k)]

L Q y U ii(Ti(k) v2( k) +Ui(2mn)-2 f dx(exp(2'"[y, (x) + y, (x)]) + c.c.]'
where

y, (x)=2mL 'Q„k 'exp(-2niki ikx-)a, (k),

and p, (k) and o, (k) are the charge- and spin-density-wave operators defined by 2 '"Q~(a~+~~ta~i
+a~+~Pa&~), and p2, o2 are similarly defined. In Eq. (4) the boson representation"

0'&, (x)-@&,(x) = lim (2nn) '"exp[+ik Fx+2mL 'g„k ' exp(- 2inlkl —ikx) p~, (k)] (6)

has been used to replace the four fermion operators in the Ui term. In Eq. (6) the plus (minus) sign
goes with j =1 (j = 2) and n vz is a cutoff parameter which LE interpret as a bandwidth. The next step
is to perform a canonical transformation to diagonalize the part of H, excluding the U~ term. The only .

effect on the Ui term is to replace the factor in the exponent7 by 2"2e~[y, (x) +cp, (x)], where tanh2y
=Ui, (2mv~) '. One then observes that for 2 '"e~=1, which implies a particular value of U, i, the Ui
term is precisely in the form of a boson representation of some fictitious spinless fermion field. Re-
writing the kinetic energy term in fermion representation one finds

H, =—e' H, e ' =v~'P„k(al, a, -b, b„)+U (2mn) 'g„(a„b„»„+H.c.). (7)

This is readily diagonalized resulting in an energy gap b, = U~(2mn)
Now that H, is diagonalized LE proceeded to calculate various response functions. Let us focus our

attention on the spin-density-wave response y(x, t) defined by

X(x, t) = (4', ~ t4, i (x, t)+, i t4» (0, 0)) .
The response function is calculated using the boson representation

(8)

4, i 4, i(x, t) =(2mn) 'exp(-2kFx) exp(-+„A(x, k)2 '"
[p, (k, t)+p, (k, t)])

x exp(-Q„A(x, k)2 "2 [o', (k, t) -o2(k, t)]], (9)

where A(x, k) =2wL 'k ' exp(-2niki —ikx). Since the & and p degrees of freedom are completely in-
dependent, LE correctly pointed out that X(x, t) can be factorized into two parts involving only p or o'

to be calculated using Ho and H„respectively. But then they claim that since H, has a gap in its spec-
trun1 at low temperatures only excitations in Ho are important. Let us examine this claim by calcu-
lating the correlation function in o space explicitly. We first perform the canonical transform e'
which we saw had the effect of multiplying o', +a~ by e~. It is easy to see that the effect on 2 ' 2(o', -o', )
is to replace it by 2 '"e ~(o, -v, ). For the special choice of coupling constant the coefficient of &, -&,
is again unity and we can again use the boson representation. Considering only zero temperature we
have

X(x, t)=-&0Iexp[Z.A(o, —&.)]., ~ exp[-Z. A(&i -&~)]o,.l»u,

= (2gn)'(Oi+, t(x, t)4', t(x, t)4', (0, 0)4', (0, 0)i0)Hi,

where 4, and 4', are the spatial representations of the operators a and b defined in Eq. (7) and i0) is
the ground state of H, . The point is that 0, -0, corresponds to a pair of destruction operators. A
spectral analysis of Eq. (10) shows that the intermediate state must have a minimum energy of 2b, cor
responding to creation of a pair of holes. To be more explicit we make use of the canonical transfor-
mation

Qg, = cosL9pQg —sln0pbp

(11by, g
= cos6gb~, p + sin0pap,

F F

where tan28, =U (2mn) '(k -kF) ', to diagonalize H, . Then X™(x,t) given in Eq. (10) can be computed to
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give

y(x, t) =(2ma)' ——exp(iqx i[E(k)+E(-0+q)]t) [s,c „,(sc „,+c,s „„)],dk dq

where E(lz) =[V~'(2mn) '+(k —kF)']'", s»= sin0~,
and c~ = cos0~. Making the chapge -of variable nk
-k', nq-q', Eq. (12) is clearly of the form

j(x, t) = E(x/n, v, ' t /n), (13)

If we have a parabolic band the strong-coupling
limit of this model with attractive g consists of
singlet pairs of electrons. ' The binding ener-
gy per pair can be worked out in terms of the
ground-state energy of a particle bound by a 6-
function potential and is given by g'mk '/4. The
energy gap is then cutoff independent. On the

where E(x, t ) is independent of n and is a well-
defined function which is oscillatory in t. It is
clear from Eq. (12) that X has Fourier component
only for tu~ &2&. j™(q,&u) thus has a gap in its
spectrum. The correlation function y(q, &u) is a
convolution of j™(q,~) and y ~ (q, &u) from the p de-
grees of freedom. Details of X(q, &u) will depend
on the behavior of X~(q, v) near u& =26 which for
~= n ' is not known reliably. However, it is
clear that existence of a gap in X(q, (u) means that
no divergence is possible in X(q, ~) for small &u.

This is to be contrasted with the charge-density-
wave response function where o, —v, in Eq. (9) is
replaced by &, +o,. Then, in fact,

&olexp[2 '"e"Z~W(&, +o,)] lo&~, «
and the low-lying states are completely described
by the p, and p, degrees of freedom. An identical
argument applies to the singlet and triplet super-
conducting pairing response.

Equation (13) clearly indicates a basic difficulty
with the Luttinger-type model with 6-function in-
teraction, namely, that the problem as defined
by Eqs. (1) and (2) contains no time scale. Hence
any dimensionless function of space and time
must appear with a cutoff n. In the limit e - 0
the original problem becomes undefined. In keep-
ing with LE s procedure we interpret vFn as a
bandwidth. In the limit e - 0 not only are the gap
and X™(x,t) undefined, but the correlation functions
that LE calculated which are of the form (a&a)&

are also either zero or infinite. Another way to
illustrate this difficulty is to go to the limit of
the Hubbard model. where U~ -Utt = V=g. The in-
teraction is then simply

gZ &(~;-~;).

2&'= v~n '(exp[(2g) '(2mvF)] —lj '. (14)

It is interesting that in the limit of strong cou-
pling &' reduces to the LE expression for the
gap &. Of course this type of argument does not
constitute a proof that the original problem with
a finite bandwidth is solved by the choice of a
finite o. in the end but it strongly suggests that
this procedure is a reasonable one.

DW
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FIG. 1. Summary of our understanding of the zero-
temperature interacting Fermi-gas problem where
g~=U~=U~~ and g&

——V. The behavior for g&&0 is ob-
tained using renormalization-group equations (Refs. 8
and 4). For g&& 2g2 we have simultaneous triplet (TS)
and singlet superconducting (SS) instability while for g,
&2g, we have charge- and spin-density wave (CDW and
SDW). The line at g~(2mvF) =-&5 is where the LE so-
lution is available. That solution is extended to the en-
tire g& & 0 region by assuming that scaling laws are ap-
plicable. We have SS diverging on the extreme left and
CDW on the right. The intermediate region is where
both responses diverge. For g&& 0 SDW and TS re-
sponses are not divergent.

other hand if instead we have a linear spectrum
that is cut off by a bandwidth vFa ' we can again
solve for the binding energy of the singlet pair.
This is essentially the problem solved by Cooper'
and the binding energy per pair is
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Our present understanding of the g,g, problem
is summarized in Fig. 1. The g, &0 half-plane
behavior is the renormalization-group result of
Refs. 3 and 4. The uniform magnetic susceptibil-
ity is finite. The line at g, (2mvF) ' = —-', corre-
sponds to the LE solution. The rest of the g, &0
plane is the expected behavior if scaling equa-
tions can be used to scale onto the LE solution.
The uniform susceptibility is exponentially acti-
vated and all triplet excitations are nondivergent
for g, & 0. The behavior is thus different from,
but not completely orthogonal to, that suggested
by S6lyorn, which has simultaneous charge-den-
sity wave and singlet pairing instability for all
g, &0 and the triplet excitations behave like cu"

with p. &0.
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The inadequacy of the Ansatz proposed by De Hujula and Glashow for explaining the me-
son masses is discussed. The importance of fixing the spin-parity of the abnormal parity
states E(1420) and D{1285) for the possible success of SU(4) is emphasized. We also point
out some further consequences of the ideas of asymptotic freedom.

In a recent paper De Rdjula and Glashow' pro-
pose the following Ansatz for the mass matrix

where A and B depend on the spin, parity, etc.,
of the multiplet. By diagonalizing this matrix it
is easy to see that

(q' - q)'/4 = (Z —n)'+ ,'(q'+ q 2K)'—-
——,'(q'+ q —2')(Z —n) .

The last equation is poorly satisfied by pseudo-
scalar masses linear or quadratic. For compari-
son we write the SU(3) nonet mass formula

(TmrP)' rn +TrI'

where P is the matrix of meson fields, 4„.
= b, »5 „5,.». Equating (1)and (4) we find that De Ru-
jula and Glashow's Ansatz implies mo=B, m
=2p, , +A, nA»=(p, , —p. ,), P=o. To get a nonzero
P from Eq. (1) we must make B depend on the
quark index. If we use experimental masses in
(4) we get p= ——,m, . In other words, B for q' (AX

quarks) is half as much as for n ((P(P quarks).
This is in the right direction if the ideas of as-
ymptotic freedom have any validity at all for low-
e st-lying hadrons.

Vector mesons. The Okubo —Ansatz' gives p
=m, =0, i.e., B=0. It is difficult to take the val-
ue B=—', (m —m ), as given by Ref. 1, seriously
since' (a) a large part of the p-~ mass differ-
ence can be electromagnetic in origin i m~ = 770
~10 MeV, m =782~0.6 MeV]; (b) 1(~-2n)
) 10(e,/4n)'I'(p- 2n) which suggests considerable
electromagnetic mixing of p and u&; (c) mass
splitting between K*' and E*+ is substantial, m'
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