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these states (if they exist) do not account for a
large fraction of the total number of states at T
=0.1 K since the long-time specific heat and the
short-time specific heat are equal at this temper-
ature.

To our knowledge, the time dependence of the
specific heat in amorphous substances at low
temperatures is the only prediction made by the
tunneling model as presently formulated ' which
is specific to the tunneling process. For instance,
the ultrasonic results' can also be explained with
the assumption of low-energy nonharmonic oscil-
lator states, which do not arise from tunneling.
It is conceiveable that one of the basic assump-
tions of the tunneling model, i.e., that both the
specific-heat anomaly and the thermal conductiv-
ity are caused by the same kind of defects, is re-
sponsible for the disagreement between theory
and experiment found in the present investigation.
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According to manufacturer specifications, GE No.
101 fused silica has 7 ppm by weight of Fe&03 and Spec-
trosil B has less then 0.1 ppm. Low-temperature spe-
cific-heat anomalies due to magnetic impurities have
been observed in a number of glasses (see Ref. 3).
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A first-principles linear combination of atomic orbitals calculation of the electronic en-
ergy structure of amorphous silicon based on Henderson's 61-atom quasiperiodic lattice
model has been performed. The potential is constructed by a superposition of atomic po-
tentials with interactions between all atoms included. The lattice summation of multi-
center integrals, evaluated by the Gaussian technique, is performed to convergence. Re-
sults on energy levels and density of states are presented and compared with experiments.

The study of amorphous solids has been of
great interest from both theoretical and experi-
mental standpoints in the recent years. ' Several
con'tinuous random-tetrahedral-network (CRTN)
models for the structure of the amorphous Group-
IV semiconductors" have been proposed and they
have provided the foundation for numerous theo-
retical works. Most previous calculations of
electronic structure either are based on a simple

model Hamiltonian with the nearest-neighbor ap-
proximation' or resort to empirical or semiem-
pirical means. ' Discussions of the energy spec-
tra of amorphous Si and Ge based on the band
structures of the crystalline polytypes have also
been given. ' However, first-principles calcula-
tions of energy structure have not been reported
and some of the very ixnportant issues such as
band tailing are yet to be demonstrated from such
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calculations.
We have performed a first-principles calcula-

tion of the electronic structure of amorphous sili-
con (a-Si) by means of the method of linear corn-
bination of atomic orbitals (LCAO) which has re-
cently been applied to crystals of different vari-
eties. A quasiperiodic lattice model due to Hen-
derson, ' with 61 atoms per unit cell, is used.
Although Henderson's model may have larger dis-
tortions as compared to some of the others, ' its
radial distribution function is in very good agree-
ment with experiment. Moreover, Henderson's
model was found to be quite successful in lattice-
vibration calculations. ' The periodicity of the
large cell of CRTN is especially convenient be-
cause of the absence of the surface states. The
problem now becomes that of a band calculation
for a quasicrystal with 61 atoms per unit cell
and the general scheme of approach can be out-
lined as follows: The basis functions are the
Bloch sums associated with the appropriate atom-
ic orbitals (expanded in terms of Gaussians) for
each atom in the unit cell. The crystal potential
is expressed as a superposition of atomiclike po-
tentials centered at each Si site. The numerical
work is greatly facilitated by fitting the atomic-
like potential to the form

V"' (r) = —(Z/r) exp(-ar')

+g,.(,exp(- f,r').

A Hamiltonian matrix element may be decom-
posed into a series of three-center integrals con-
taining a Gaussian at site A, another at B, and
V"'~(r) centered at C; the integrals associated
with the first member of Eq. (1) can be expressed
in terms of the error function and those associ-
ated with the second member can be evaluated
analytically. ' Upon computing all the Hamiltonian
(H, &) and overlap (S,.~) matrix elements, the ener-
gy spectrum is obtained by solving the secular
equations IH,.&-ES,

&
!=0 for various k points.

The atomiclike potential is approximated by the
potential of a free Si atom which is computed
from the atomic Hartree-Fock wave functions (us-
ing Slater's approximation for exchange with n
= z) and curve fitted to Eq. (1). To test this po-.
tential, we use it to calculate the band structure
of the Si crystal with eleven s-type and nine p-
type single-Gaussian Bloch sums' as basis, and
the results are in good overall agreement with
those of Stukel and Euwema'(the indirect band gap
being 1.14 eV). In the crystal calculation we find
it advantageous to suppress the very long-range

tail of the atomic potential through curve fitting.
This operation is found to produce virtually no
change (less than 0.0005 a.u. ) in the calculated
crystal band structure, but has the benefit of
bringing the vacuum level much closer to the ex-
perimental value and significantly reducing the
computational work. This same procedure is
adopted in the calculation for a-Si.

For amorphous solids a more economical orbi-
tal basis set must be selected. This is done by
inspecting the eigenvectors of the Hamiltonian
for several k points obtained from the single-
Gaussian calculation for the Si crystal. Using
the relative weightings of the single-Gaussian
Bloch sums in these eigenvectors, we construct
five linear combinations of Gaussians (contracted
Gaussians), all at the same center, correspond-
ing to modified versions of the 1s, 2s, 3s, 2p,
and SP atomic orbitals. The 1s, 2s, and 2P con-
tracted-Gaussian orbitals are virtually identical
to the true atomic orbitals, and the Ss and SP
contracted-Gaussian orbitals have the same gen-
eral shape as their free-atom counterparts but
are of shorter range. Basis sets consisting of
contracted-Gaussian orbitals generated in this
fashion give much more accurate energies than
those of the true atomic orbitals. ' When the
Bloch sums of these contracted-Gaussian orbi-
tals are used to calculate the band structure of
the Si crystal, the results agree with those of
the single-Gaussian basis to within typically
0.007 a.u. However, even with the 1s, . . ., SP
contracted-Gaussian orbitals, we get a total of
549 basis functions for the amorphous problem.
To reduce this number, the 1s, 2s, 2P core-type
functions are excluded from the basis set. We
have performed test calculations on the Si crys-
tal to examine the validity of this step. With the
chosen basis functions and potential, our calcula-
tions show a downward shift in energy when the
core functions are dropped. This shift amounts
to about 0.2 eV for states near the top of the va-
lence band and becomes much larger for states
close to the bottom of the valence band. A com-
parison of the valence-band densities of states of
the Si crystal calculated with and without the core
states is shown in the bottom of Fig. 1. The gen-
eral features are similar although the peaks are
shifted to lower energies.

With only the Ss, 3P„, Sp„and Sp, orbitals
(contracted Gaussians) for each atom, the 244
x 244 Hamiltonian matrices are manageable. A
typical matrix element is expanded as a lattice-
point summation of the multicenter integrals de-
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FlG. 2. Calculated density of states of a-Si near the
gap region. (a} Valence band, (b} conduction band.
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FIG. 1. (a) Experimental x-ray photoelectron valence-
band spectra of a-Si (Ref. 9). (b} Calculated density of
states of a-Si. (c} Calculated densities of states of Si
crystal without core states (solid curve) and with core
states (dotted curve). The energy of the top of the va-
lence band is set equal to zero for each of the curves
in (b) and (c).

scribed earlier. This lattice summation must be
carried out to full convergence. ' In the present
calculation an overlap integral still makes a non-
trivial contribution'o to the matrix elements mhen
the two atoms are separated by even three times
the bond length (corresponding to a distance of the
eighth-neighbor shell), reflecting the inadequa-
cy of the nearest-neighbor or next-nearest-neigh-
bor approximations for this ease. %e have cal-
culated the energy levels by solving the 244 x244
secular equations for four high-symmetry k
points (real matrices) and four additional inter-
ior k noints (complex matrices). Because of the

large unit cell, the Brillouin zone (BZ} is very
small and there are 244 levels for each k. Thus
it is not necessary to sample a large number of
k points in order to obtain a representative ener-
gy spectrum.

The calculated density of states (DOS) of the
filled levels and empty levels of a-Si is shown in
Fig. 1. Included in this figure are also the DOS
of the Si crystal valence band and the experimen-
tal results of Ley et al. for -Si. ' The most
prominent peak in the DOS of the crystal valence
band is preserved in the amorphous solid, while
the two lower peaks are less pronounced. Had it
been possible to include the core states in our
calculation, these two lower peaks would be
somewhat higher because the energy levels at
the lower part of the valence band will be pushed
up slightly. This mould bring the calculated DOS
curve closer to the experimental data. The DOS
near the Fermi level are shown in more detail in
Fig. 2. There is a local maximum at 0.25 eV be-
low the Fermi level and also one 0.25 eV above
it. Examination of the DOS calculated by using a
four-point and a seven-point sampling of the BZ
shows that these two local maxima persist where-
as the other structures (farther away from the
Fermi level) in Fig. 2 do vary and therefore may
be attributed partly to statistical fluctuation. Re-
cently Engeman and Fischer" found that such
local maxima in DOS are necessary to explain
their experiment on luminescence spectra. Re-
sults of earlier experimental work by Spear and
LeComber indicate a maximum in the distribu-
tion function of the localized states at energies
somewhat above the Fermi level. " At present
we are not able to comment about the nature of
the states associated with the local maxima in
Fig. 2, e.g. , whether they are localized or not.
For such an analysis one would have to determine
not only the eigenvalues but also the eigenvectors
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oratories are not always consistent. '4
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FIG. 3. Comparison of the calculated joint density of
states of a-Si (solid curve) with the experimental opti-
cal-transition strength (dotted curve) from Ref. 18.
The two curves were ad)usted to have the same maxi-
mum height.

of the 244 x244 Hamiltonian matrices. This is
beyond our presently available computing capabil-
ity.

The highest filled state and the lowest empty
state are separated by 0.032 eV; however, little
quantitative significance should be attached this
band gap value. The magnitude 0.032 eV is well
within the error incurred by neglecting the core
states, and thus it may change vastly when the
core states are reinstated. Aside from this un-
certainty and the uncertainty associated with the
lattice model, the DOS are very low in the re-
gion between the two local maxima so that experi-
mental measurements would most likely lead to
a much higher band gap.

Under the approximation of constant optical-
transition matrix elements, the joint density of
states {JDOS) is proportional to the optical ab-
sorption spectrum. Our calculated JDOS curve
which has a peak at 6.5 eV is shown in Fig. 3 to-
gether with the optical-transition curve for a-Si
obtained by Pierce and Spicer. " Inclusion of
core states and the variation of the optical-tran-
sition matrix elements, however, may cause a
change in the shape of the theoretical curve. Be-
cause of the 1ocal maxima in the DOS {Fig. 2), a
small bump in the JDOS near 0.5-0.8 eV is found.
Structures in the optical absorption spectra at
energies below f eV have been observed, but the
results reported by authors from different lab-
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