ERRATA

ION ACCELERATION IN STRONG ELECTRO-MAGNETIC INTERACTIONS WITH PLASMAS. A. Y. Wong and R. L. Stenzel [Phys. Rev. Lett. 34, 727 (1975)].

The following references should be added:

To Ref. 2, "G. A. Swartz, T. T. Reboul, G. D. Gordon, and H. W. Larber, Phys. Fluids <u>3</u>, 973 (1960); this last reference detected ion accelerations in an expanding plasma much smaller than the electromagnetic wavelength."

To Ref. 4, "H. C. S. Hsuan, Phys. Rev. <u>172</u>, 137 (1968); P. Koch and J. Albritton, Phys. Rev. Lett. 32, 1420 (1974)."

ASYMPTOTIC SU(4) IN THE l^+l^- ANNIHILA-TION OF NEW RESONANCES. E. Takasugi and S. Oneda [Phys. Rev. Lett. 34, 988 (1975)].

The following text was omitted from this Letter:

Note added.—The most general form of V_{μ}^{em} may be written as $V_{\mu}^{em} = V_{\mu}^{3} + \frac{1}{3}\sqrt{3} V_{\mu}^{8} - x(V_{\mu}^{15} - yV_{\mu}^{0})$. If we take the usual fractional charge assignment of SU(3) quarks, $(Q_u, Q_d, Q_s) = (\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3})$, the charge of the charmed quark is, in general, $Q_c = n - \frac{1}{3}$ in which case the charmed mesons $D_1(c\overline{d})$, $D_2(c\overline{u})$, and $F(c\overline{s})$ have the charge n, n-1, n, respectively, and $x = (\frac{2}{3})^{1/2}(n-\frac{1}{3})$, $y = \frac{1}{3}\sqrt{3}$. The requirement to suppress the strangeness-changing neutral currant restricts n to either 1 or -1.

In the case of SU(3) quarks of integral charge,² again there are two possibilities. However, the difference between the fractional and integral charge appears only through the coefficient of the single current V_{μ}^{0} . This change can be absorbed in our arbitrary parameter p in Eq. (9). Thus we consider two possibilities, n = 1 and -1. In the "ideal" limit we obtain the sum rule independent of x and y, $(m_{\rho}\Gamma_{\rho})^{1/2} = (m_{\omega}\Gamma_{\omega})^{1/2}$ + $(2m_{\varphi}\Gamma_{\varphi})^{1/2}$. The $\Gamma(\varphi_c)$ depends on the choice of the value of x. The case n=1, i.e., $x=(\frac{2}{3})^{1/2}$ was discussed in the text. For n=1, i.e., x $= -2(\frac{2}{3})^{1/2}$, we obtain $(m_{\varphi_c} \Gamma_{\varphi_c})^{1/2} = (2m_{\omega} \Gamma_{\omega})^{1/2}$ +3($m_{\omega}\Gamma_{\omega}$)^{1/2}. Thus if we take $m_{\omega}\Gamma_{\omega}$: $m_{\omega}\Gamma_{\omega}$ =1:2 as in the text, we obtain $m_{\omega}\Gamma_{\omega}:m_{\varphi}\Gamma_{\varphi}:m_{\rho}\Gamma_{\rho}$: $m_{\varphi_c} \Gamma_{\varphi_c} = 1:2:9:32$. With $\Gamma_{\omega} = 0.76$ keV and Γ_{φ} = 1.34 keV, we obtain $\Gamma_{\varphi_c} \simeq 6.7$ keV from the above sum rule.

The present experimental value of $\Gamma_{\varphi_c} \simeq 5$ keV might favor the choice¹³ n = -1, in which case the *D* and *F* form the *D*⁻⁻, *D*⁻ isodoublet and *F*⁻ isosinglet.

SEARCH FOR CHARMED-PARTICLE PRODUC-TION IN 15-BeV/ $c \pi^+ p$ INTERACTIONS. C. Baltay, C. V. Cautis, D. Cohen, S. Csorna, M. Kalelkar, D. Pisello, E. Schmidt, W. D. Smith, and N. Yeh [Phys. Rev. Lett. 34, 1118 (1975)].

The receipt date of this Letter was omitted. The manuscript was received 11 February 1975.