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Critical Points for Dimer Models with —,-Order Transitions
'
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A new extensive variable A and its conjugate field II are introduced for the Kasteleyn
dimer model on the honeycomb lattice via an isomorphic membrane-polymer chain mod-
el. The resultant phase diagram has a first-order phase line, thereby revealing a non-
local order parameter in this model for the first time. The first-order line terminates
in a critical point with critical exponents 0. =e' =0, p =1=y=y', and 6=2. The —-order
exponents appear ori the line II =IIgpjtjgg].

The Kasteleyn dimer model on the honeycomb
lattice, ' to be called the K model, is one of the
few exactly solvable statistical mechanical mod-
els of cooperative phenomena. Therefore, it has
been disturbing that the phase transition in the K
model is highly unusual. In particular, no order
parameter which is identically zero in the high-
temperature phase has previously been found
even though the model is perfectly ordered in the
low-temperature phase.

The known behavior of the transition is that the
free energy E is a constant for T less than T„
while above and near T, the free energy has an
extra piece which behaves as (T —T,)'~' which
gives rise to a (T —T,) '~' divergence in the spe-
cific heat. Because the lowest derivative to be
simply or finitely discontinuous is the third de-
rivative with respect to (T —T,)'~', this transi-
tion has been called a —,'-order transition. '

The K model is the simplest member of a fam-
ily of dimer models, the relation being that each
member has a —', -order transition. Various mem-
bers of this family have been used to model fer-
roelectrics, ' biomembranes, and polymers. '
The K model itself is isomorphic to the mem-
brane-polymer model when the latter is con-
strained to maximum density.

The purpose of this Letter is to define two new
variables, an area A and a surface pressure I,
suggested by the membrane analog. In terms of
these new variables one obtains a phase diagram
in which the —,'-order transition for the K model
appears as a critical point at the end of a first-
order transition line along which two phases co-
exist in equilibrium. The variable A is discon-
tinuous across the first-order transition and the
discontinuity goes to zero at the critical point.
This kind of behavior is usually described by the
critical exponent p and the corresponding vari-
able is usually called the order parameter. Al-
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FIG. 1. The brick lattice, which is topologically
equivalent to the honeycomb lattice, is shown as dotted
and heavy solid lines. The heavy solid lines represent
the dimers, of which there are five vertical ones
shown or partly shown, each with zero energy, and
eight horizontal ones, each with energy e. The iso-
morphic membrane-polymer chain state with parts of
four chains is shown in dashed lines. This finite-lat-
tice state has p„=~ andA =1.5.

though the variable A is not a local order param-
eter of the sort which appears in spin models, it
seems reasonable to identify it tentatively it as a
nonlocal order parameter and assign the expo-
nent p to the discontinuity in A.

The states of the K model consist of nonover-
lapping dimers which completely fill the honey-
comb lattice, with dimer energies assigned as
in Fig. 1. (Actually, Kasteleyn considered a
more general version with unequal energies for
the two kinds of horizontal dimers, but the sym-
metrical case exhibits all the properties of inter-
est. ) The partition function is

Z(x) = Q„n(n)x",

where x = exp(- e/kT) and A(n) is the number of
configurations with n horizontal dimers. With
use of the Pfaffian method' and a unit cell of four
sites the following expression for the logarithm
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of Z per lattice site N is easily derived:

N 'lnz=g, j'"dy, j 'dy, in@(y„y,)l',

where

g(p„y, ) = 2x'(1 —cosy, ) —exp(iy, )

and the density of horizontal dimers p„can be
calculated explicitly as

(m 'cos '(1/2x), x~-,',
p. =

~

(2)

This demonstrates the (T —T,)'~' behavior of the
energy (which is ep„) at the critical temperature
given by T,= e/1n2 where x, = —,'.

The above well-known results are incomplete
thermodynamically because there is really only
one variable in the problem, call it T or e/T.
The customary addition of a field 5 imposed on,
say, the horizontal dimers only changes the sin-
gle variable to (a+5)/T without in any way chang-
ing the nature of the transition. The obvious
trial order parameter is the density p„of ver-
tical dimers which is maximal, namely p„= &,
for T ~T,. However, p„ is never zero above T„
nor is any linear combination of p„and p„at.ways
zero above T„so that these do not behave like
ordinary order parameters.

In order to complete the thermodynamic descrip-
tion of the K model let us consider a new vari-
able,

A=(1 —p„) '.
If there are M sites on a horizontal row of the
lattice, then in the isomorphic membrane-poly-
mer model the number of chains cutting this row
is M/A or the mean area per chain is A. (See
Fig. 1.) Conservation of chain links demands con-
servation of the number of lattice sites N, but as
p„ increases from zero (to a maximum of 2) the
number of lattice sites in the horizontal rows in-
creases by a factor of A in order to conserve the
number of chains and the number of sites in the
vertical direction decreases by a factor of A. '
in order to conserve the mean chain length in the
vertical direction. These changes in lattice
shape are natural for the membrane-polymer
model since the conjugate force to A will be a
lateral pressure II operating only in the hori-
zontal direction. In dimer language the param-
eter A and these changes in lattice shape are not
so physically motivated. A more "natural" di-
mer variable follows from considering the verti-
cal dimers as particles and the horizontal dimers

as holes with no change in lattice shape. How-
ever, this choice, call it V= (1 —2p„) ' and its
conjugate field P, leads to a phase diagram with
a rather uninteresting line of ~-order transitions,
and so we exercise our freedom of choice to con-
sider the variable A. It should be noted that the
expansion or contraction of any lattice side is at
most by a factor of 2 so that the shape change
does not affect the values of p, and N 'lnZ in
Eqs. (2) and (3) in the limit of an infinite lattice,
N~ oo

The statistical mechanics with the new vari-
ables A and II is carried out in a canonical en-
semble. In chain language the number of chains
N, is kept fixed and the temperature T and the
mean area per chain A are fixed. The latter A
constraint is much like the volume constraint im-
posed in the canonical ensemble calculation for
classical gases. Thus, the partition function is

Z(T, A)= Q exp(-e/kT)
A states

= O(n„) exp( n„e/k-T),

where n„ is the number of horizontal dimers re-
quired by all states with area A and 0 is defined
in (1). The unusual feature, which is not shared
by spin-type models, is that the total energy NE
=n„& is completely specified by A and 0 is defined
for all states with the same A. This is a con-
sequence of the absence of finite energy interac-
tions between dimers in the model, or the pres-
ence of only infinite-excluded-volume interac-
tions. The free energy per lattice site is

E(T, A) = —k TN ' lnZ = p„e —TS(A),

where S(A) = -kN '1n[G(n„)]. Notice that S, like
E, is also not a function of T but only of A. Com-
putationally, S is obtained from (1)-(3)by using
the maximum-term argument,

N ' ln[Z(x)] = max„(N '[in(Q(n))+n lnx]]

= k 'S(A) +p „lnx.

Specifically, given A, p„ is determined by (4),
x is determined by (3), lnZ is determined by (2),
and S(A) is then determined by (7).

The difference between this treatment and all
previous treatments, reviewed in Eqs. (1)-(3),
is that x in (7) is not determined by x= exp(- e/
kT). Rather, x is merely a variable related to
p„and A whose use enables us to compute S(A).
Now, if xC exp(- e/kT), then some extra force or
pressure will be needed to stabilize the homogen-
eous maerostate described by A and T. This ex-
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Region

in having low-A and high-A phases coexisting
side by side on the same lattice; indeed, the do-
main-wall energy is zero. The existence of an-
alytic metastable continuations into the two-

phase region means that there is no essential
singularity on the phase boundary as there is in

some models. " This is reasonable since there
is no domain-wall or "dropletlike" free energy
because of the lack of finite energy interactions
between dimers.

The critical behavior of this model is still
somewhat unusual. Close to the critical point at
II=0, A=1, and kT, =a ln2 the pressure behaves,
for A &1, as

(9)

where

(10)

FIG. 2. A schematic sketch of the II-A isotherms.
Each isotherm proceeds to II =+ along the line A=i.

tra pressure is just II which is given by

II = —(BF/BA)r. (8)

Equation (8) is fully equivalent to the combined
first and second laws of thermodynamics, name-
ly

TdS = dE+ II dA.

Previous treatments, by requiring x= exp(- e/h T),
implicitly set II = 0.

The II-A isotherms are plotted in Fig. 2. The
isotherms do not end at A = 1 but continue to II
=+ ~ at A=1, because for a perfectly ordered
state of incompressible objects the pressure can
increase indefinitely without changing the volume.
Isotherms for T & T, have portions with negative
compressibilities, therefore indicating unstable
two-phase regions. Although Van der Waals
loops are often taken as a sign of an approxi-
mate or incomplete calculation, I emphasize that
they must appear in this calculation if there are
any two-phase regions because the values of S
were calculated for a given p„under the assump
tion of a homogeneous state. The unstable and
metastable portions of the isotherms are easily
eliminated by finding another state with lower
Gibbs free energy G = E —TS+ QA at the same T
and 0; this gives the same result as the Maxwell
equal-area construction. There is no difficulty

Ao(T) —1+a(T, —T).

The coexistence curve follows A, (T) which gives
the critical exponent p= 1 for the nonlocal order
parameter, which is the discontinuity in A. across
the first-order phase line. From (9) the critical
isotherm behaves as II —(A —1)' so that 6 = 2.
Since S is only a function of A, &„=0 identically
and n=0= n'. Along both the disordered side of
the coexistence curve and the line A=1, T& T„
the compressibility Kr = -A (BA/8 II)r diverges
as IT —T, I

' so that y= 1=@'. The —,'-order expo-
nents appear on the line II=0, where A —1-(T
—T )' ' and |." - (T —T ) '~'

The 0-A phase diagram in Fig. 2 is reminiscent
of some produced by Fisher and Felderhof' for
rather different one-dimensional models with
many-body interactions. In their case the models
did not obey the usual scaling relation y = y' while
in the present case n+2P+y=3, not 2.

Although it is clear that the transition in the K
model remains an unusual one, at least it now

has a phase diagram which can be compared to
the more usual ones and a nonlocal order param-
eter which is the discontinuity in the new vari-
able A across the first-order transition. The
unusual features of the transition are reasonable
in view of the excluded-volume or "hard" inter-
actions between dimers (or chains) in the model
and the lack of finite pairwise or "soft" interac-
tions. This makes the K model an important one
for systems in which the excluded-volume effects
may dominate the transition. Further work in
this direction is being done on other models in
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the —,'-order family including the full membrane-
polymer model with variable density, in order to
compare to II-A lipid monolayer experiments. '
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Measurements with a pulsed He atomic beam incident on the surface of liquid He at &
=0.03 K show that the probability of specular reflection depends only on the perpendicular
momentum of the atom cos~ and that it varies smoothly from 4&10 to less than 10
for & coso in the range from 0.05 to 0.6 A . The probability of diffuse inelastic scattering
is less than 2 X10 . Contrary to theoretical expectations, there is no significant change
in the reflection probabQity at the roton threshold at & =0.5 A

This Letter describes measurements of the
elastic scattering probability of low energy (0.1
K~h2k'/2mka ~ 3 K) 'He atoms incident on the
free surface of superQuid He. The probability
of elastic scattering R(k, 6) was measured as a
function of the angle of incidence 8 and the mo-
mentum Sk of the incident atoms. In addition, a
search was made for atoms inelastically scat-
tered from the surface which gives an upper lim-
it for the probability of inelastic scattering,
D(k, 6). The liquid-helium surface was varied in
temperature between 0.03 and 0.12 K and no tem-
perature dependence in R was observed. The ex-
perimental R(k, 6) is therefore characteristic of
the ground state of the liquid and its surface.
Qur experiment is related to a number of theo-
retical discussions' ' of the process of condensa-
tion and evaporation at the surface of superfluid
helium. It has been claimed" that R(k, 6) is re-
lated to the single-particle spectral density func-
tion in the liquid and therefore perhaps to the
elusive n„ the fraction of atoms in the condensed
state. This claim is based on the application of
tunneling theory and supposes that the tunneling
Harniltonian which couples the vacuum states to

the liquid is weak, implying that the probability
of condensation f(k, 6) =—1-R -D is small. Our
results, on the contrary, show that, even for
large 6 and small k, f (k, 6)= 1 with R and D both
small. We deduce that "weak" tunneling theory
is probably invalid, and note that the effect of
the finite thickness of the surface region and the
effect of the surface excitations (ripplons) have
not been included in any of the published theoret-
ical calculations.

Apart from its possible connection with the
condensate fraction, the reflection probability
R(k, 6) is related to +(k), the phonon spectrum of
the liquid (shown in Fig. 1). As was pointed out

by Anderson' and Widom and co-workers, ' a con-
densing atom with momentum Sk transfers an en-
ergy e = Lo+h'k'/2m to the liquid, where Lo/kB
= 7.16 K is the latent heat at absolute zero. If
the atom produces a single "roton, " i.e., a pho-
non near the minimum in cu(k), a minimum kin-
etic energy (a L,)/ka = 1.6 K-is required. It
has been predicted"' that this will produce a
discontinuity in the k dependence of R(k, 6) at k
= 0.50 A '. The possible detection of this dis-
continuity was one of the reasons for undertaking
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