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The recentl re orty p ed structured continuum of the F, B tra
determine the E-state t t' le po en xa curve and the nature of the

e & transition in I2 is analyzed to

The minimum of the E c l
e o the electronic transition moment

e curve ies at 41412 cm 1 with R =3.65+
creases with increasing R beyond - 4 A.

Rousseau and Williams' have recently described
an experiment in which the E state of I, is excit-
e by a sequential two-photon absorptionrp ion process,

„)-X(0 . Z ). The single excited lev-
el then radiates to both bound and unbound l

e s ate, giving a spectrum which displays
both discrete and diffuse features. The continu-
ous segment of this spectrum shows structure
characteristic of an "edge effect, " or the exis-
ence of an extremum in the difference otent' l

This distinctive structure has
been observed in a number of cases including one
other transition in I 4 but non f th2p

reported examples illustrates the phenomenon as
simply as does the E -B spectrum of Rousseau
and Williams. Because of its simplicit thi
o ers a valuable opportunity to demonstrate how
i ormation about the unknown potential curve
and the tre ransition-dipole-moment function can be
deduced by synthesizing a spectrum which match-
es the experimental spectrum.

The emiemission process is illustrated in the po-
ential diagram of Fig. 1. Excitation occurs

from v" =16,J"=15 of the B state to v'=53 of
the Z state. ' The fluorescence intensity is ov-
erned mainlainly by the transition strength function

18 gov-

and the Franck-Condon overl I tr ap. n erpreted
classicall they the Franck-Condon principle dictates
that the emission terminate on the da&ed curve
V(R), which is the locus of points which conserve
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FIG. 1. Potential curves for E and B states of I& and
difference potential V(R) =U (R) -U (R)z +Fz (energies

so s own are pointsre ative to X-state minimum) Al h
o stationary phase for energy e" above the B-state
dissociation limit.
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nuclear position and momentum in the transition.
Of course the quantum mechanical overlap inte-
grals are taken over all positive R. However,
for a given B-state energy E~ the major contri-
bution to the overlap occurs near R*, the root of
V(R) =E~, where the E- and B-state vibrational
wave functions have the same periodicity. If ad-
ditionally the two wave functions are in phase at
R*, a spectral peak occurs at frequency v =E~
-E~. For unbound B-state levels which lie be-
low the extremum V {R), two regions of R con-
tribute significantly to the overlap. These con-
tributions may add constructively or destructive-
ly, and the result is the characteristic modulat-
ed interference pattern evident in the E-B dif-
fuse spectrum. The remainder of this paper will
concern just this portion of the E-B spectrum,
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which is reproduced together with the final cal-
culated spectrum in Fig. 2.

The experimental spectrum is the sum of the
R- and P-branch components, multiplied by a
detector sensitivity function F(v),4

FIG. 2. Observed (from Ref. 1) and calculated F. k
spectrum, continuous portion only.

hatt» g

Here E(v) includes the explicit dependence on population and the fundamental constants, s(J', J'») is the
Honl-London factor, and p, ,(R) is the transition moment function. y„i+i(R) and y,» ~»{R) are solutions
to the radial Schrodinger equation (for effective potentials which include the centrifugal term), with

y, » normalized to the density of states for energy e". The frequency dependence in (1) includes a fac-
tor of v' for monochromatic detection of quanta per unit wavelength interval. The application of (1) is
straightforward when the potential curves and transition strength function are known. In the present
case the problem of synthesizing a correct spectrum reduces to one of inferring the poorly known quan-
tities, U~(R) and p, ,(R).

The semiclassical treatment of the integrals in (1) demonstrates clearly the origin of the interfer-
ence effects in the spectrum. ~"' ' Away from the classical turning points the semiclassical wavefunc-
tions can be represented (omitting normalization constants) as

kit cos+zt ~ X &tt k&tt cosg&tt ~

where k is the local wave number and cp is the phase, i.e.,

k, '=8m'pc[a" —U~(R)]/k, y, ~ = f k,- dR —~/4. (3
B

Here R~ is the classical turning point on the potential U~(R) for energy e . The functional part of the
Franck-Condon integrals is

(y,»l p, (R)l )(„I)-& f (k;.k„.) "'p, (R)( coscp ++.cosy ) dR, (4)

where y, =y,~ay„t.' To evaluate this integral we invoke the stationary-phase approximation, which
'consists in recognizing that any significant contribution must come from a region of R where the phase
(y+ or y ) is changing slowly with R, provided such a point exists. If p, ,(R) varies slowly with R, the
condition for a point of stationary phase is By/BR =0 =k,» a k„i No such. point occurs for y+, and so
the term involving cosy+ contributes negligibly to the integral. For y the condition is k,»{R ) =k„,(R ),
i.e. , the Franck-Condon principle; and the points of stationary phase coincide with V(R) in Fig. 1.

For E~ sufficiently below V,„(R) we may simply add the contributions to the integral from R, and
R,*, each evaluated in the conventional manner, ' obtaining

{y,»l p.,(R)ly„) A, cos(W, +-m/4)+A, cos(W, +7T/4),

where

A, =P.,(R,.*)[k(R,*)lv (R,.*)l]-"' W. = f"* k,„dR —'f * k„, dR.
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Equation (5) can be written more illustratively:

&x,-lu. (R)lx. )-~, o w, o w +(&.-&,)co w, + /4), (7)

where W+ = (W, + W, )/2+ m/4 and W = (W, -W,)/2.
W+ and W both vary smoothly with e", so that
when the second term in (7) is small, the spec-
trum has the appearance of a modulated sinusoi-
dal function, cos'W+ cos'W, with the second fac-
tor providing the envelope under which the first
factor oscillates. Near V,„{R),where R,» and

R,* coalesce, Eq. (5) becomes invalid. ~' Never-
theless the qualitative picture presented by Eq.
(7) remains valid, as is apparent in the spectra
of Fig. 2.

Proceeding with the application of Eq. {1),we
note that the I, B state is well known spectro-
scopically, ' so that a reliable U~(R) can be con-
structed by use of the Rydberg-Klein-Rees meth-
od. Some information about the E state is avail-
able from studies of the E-B emission from low
v' levels. "" Mulliken' has considered two likely
alternatives for the E -state electronic designa-
tion, O' 'Z and 0+ 'll . Recent lifetime measure-
ments by Wilkerson" yield r(E) = 50 nsec, sup-
porting the latter choice. The vibrational analy-
sis in Ref. 10 gave values for the electronic ener-
gy (T, = 41 412 cm ') and the first two vibrational
constants (&u, = 101.59; &u, x, = 0.238). On the basis
of this information the excited level of Ref. 1 is
found to lie between v' levels 52 and 53. Nothing
is known about p, (R) from other sources. Howev-

er, from an examination of the E-B spectrum in
Ref. 1, it appears that p, ,(R) declines with R be-
yond -4 A: Without such decline the fluorescence
near 26300 cm ' would be much more intense,
relative to that at lower and higher frequency, as
these peaks result from very favorable Franck-
Condon overlap between the large peak in X „t(R)
near the right-hand turning point and correspond-
ing regions of B-state wave functions near v" = 50.

Lacking more definitive information about Uz(R),
I approximated this potential with a Morse curve
based on the known ~, and ~,x, values. Then
with p, ,(R) taken as constant, R, was varied to
bring the calculated peaks into positional agree-
ment with the observed peaks, while at the same
time co, x, was adjusted slightly to shift the cal-
culated energy for selected v' levels into coin-
cidence with the experimentally known excitation
energy. Optimum agreement was obtained when
the excited level was designated v' = 52 (e,x,
=0.2200) and R, was - 3.65 A. The functional
form of p, (R) was then varied to reproduce the
general intensity distribution of the experimen-

tal spectrum, with E(v) taken as constant. The
final calculated spectrum in Fig. 2 was obtained
with R, = 3.649 A and p, ,(R) = 0.09/[0.09+ (R
—3.89)']; t' was assumed to be 16.

The agreement between the spectra in Fig. 2

is convincing support for the general correctness
of this analysis. The calculated spectrum is very
sensitive to changes in Us(R); for example,
changing R, by only 0.001 A significantly alters
the intensity pattern. The spectrum is much less
sensitive to changes in p,,{R), as the main role
of this quantity is to scale the overall intensity
distribution. Since the detector sensitivity func-
tion was not determined in Ref. 1, the conclu-
sions about p, (R) cannot be considered quantita-
tive. In a rough sense the intensity at frequency
v reflects the square of p, ,(R) at R,*(v) and R,*(v);
thus, for example, if E(v) changes by a factor of
2 in the range 23500-25500 cm ', p, (R) would
be in error by a factor of roughly 1.4 at 3.4 and
4.5A, relative to its value at-3.9 A. On the oth-
er hand, the qualitative behavior of p, ,(R) deduced
here —particularly the significant decline beyond
4 A—must be correct for any rea, sonable E(v).
This behavior is typical for transitions involving
one ion-pair state [here the E state, which tends'
toward I'('P) + I ('S)], because the charge trans-
fer is forbidden in the limit of large separation.

With allowance for the uncertainties in p, (R)
and for deviations from the Morse form for U~(R),
I estimate the derived value of R, to be accurate
within 0.02 A. The true value of the vibrational
quantum number for the excited level is likely
within 1 of the derived value 52. The experiment
of Ref. 1 provides no estimate of the magnitude
of p, {R). However, from the 50-nsec lifetime"
the peak transition moment appears to be close
to the - 3-D value estimated for the I, D —X tran-
sition. '
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A specific coherence measurement technique is described, @which yields the relative
magnitudes of all predicted orientation and alignment parameters in tilted-foil-excited
levels of ions and atoms. Quantum-beat frequencies and relative magnitudes are mea-
sured as a function of applied magnetic field strength and direction, and analyzed using
Fano-Macek theory. The multipole moments of tilted-foil-excited 40-keV He 4d D2
atoms are measured and related to proposed excitation mechanisms.

Recently we observed coherence properties of asymmetrically excited atoms and ions via quantum
beats in the optical decay radiation, when the uniformly moving particles were subject to an external
uniform magnetic field oriented perpendicular to the beam direction. ' Such beats also appear when the
magnetic field is directed parallel to the ion beam. ' We show here that measurements of the relative
amplitudes of these quantum beats for both field directions, in linearly and circularly polarized light,
completely define the relative magnitudes of the orientation and alignment tensors of the excited state.
This technique is unambiguous, preserves the initial coherence, yields results with fractional percent
precisions, and applies to any excited level.

Equations describing the polarization and static angular distribution of electric dipole radiation in
terms of orientation and alignment tensor parameters have been given by Pano and Macek. ' In a uni-
form magneti. c field, the predicted static radiation distribution is transformed to a time-dependent dis-
tribution by a coordinate rotation. The Fano-Macek theory is based only on the symmetry properties
of the collision geometry, rather than on any specific properties of the interaction. Nevertheless, the
initial analysis of our quantum-beat data' showed effects not predicted by their equations. We have
since learned' that one of Eqs. (18) of Ref. 3 is incorrect. An analysis of both original and new data,
described below, is now in agreement with the corrected equations.

In terms of the orientation parameter 0 and the three alignment parameters A„A.„and 4, defined
for the detection and collision reference frames, the corrected Eqs. (18) from Ref. 3 are

0, "=0,"'sin8siny, Ao "=~Ao"'(Scos'8 —1)+ 2A„"'sin26cosy+ —,'A,','"sin'6cos2p,

A„d"=-,A,"sin'6cos2$+A„'"{sin8sinpsin2$+ sin6cos6cosycos2gj

+A„"i(—,
' (1+cos'8) cos2p cos2$ —cos 6 sin2cp sin2$],

where 6 and y are the polar coordinates of the light detector in a coordinate system which has as its 2
axis the ion beam axis (see, e.g. , Fig. 1 of Ref. 1). The orientation angle of a linear polarization
analyzer relative to the 2 axis is g. In our geometry, 8= p= n/2. If an external uniform magnetic
field is applied, the multipole moments of the excited states precess in time t about the field direction
at the Larmor frequency &u. For a field parallel to the beam direction z, 6=m/2 and @=w/2+rut, while
a field perpendicular both to the beam and to the direction of light observation y produces 6 = m/2+ &ut

and p = n/2. The expression for the optical decay light intensity [Eq. (14), Ref. 3] for circularly po-
larized light in a given transition is

fop= s ~~(I —2@'"(i;,i t)A, ""+2k'"(i, ,i y)0, '"],
while the corresponding expression for linearly polarized light is

Iil, = ~3 C~lt —~a~"'( j;,jt)A, '"+ ~z~"'( j;,ig) „'"]
ii40


