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Measurements of the Rayleigh scattering by concentration fluctuations in the coexisting
superfluid in 3He- He mixtures near the tricritical temperature T& show a single Lorentz-
ian line of width such that I'/q = D tt

——1.5x10 e . ' cm sec for 9x10 4~1 —T/
Tg = Q 7 & 10 . Thus the effective diffusion coefficient D~f f is proportional to &+ and,
since the concentration susceptibility (Bx/Bli, )zr is proportional to e, the effective kinet-
ic coefficient LD ~ff D~ff/(BA/Bx)zz, is proportional to e+ e

Dynamics close to conventional critical points
features a phenomenon known as "critical slow-
ing down" which is due to a singularity in the re-
laxation time for fluctuations of the appropriate
order parameter. ' In the case of binary fluid
mixtures at a consolute critical point, slowing
down of the relaxation of concentration fluctua-
tions (typically by a factor of -10 ') narrows
part of the undisplaced (or Rayleigh) line in the
light-scattering spectrum, providing a manifes-
tation ideally measured with the help of lasers
and optical homodyne spectroscopy. " These ef-
fects are now understood in terms of dynamical-
scaling and mode-mode-coupling theories. ' '

Here we report that the first measurements of
dynamical properties at a tricriti cal point' ' show
critical slowing down of concentration fluctua-
tions in the superfluid phase of mixtures of 'He
and He. We find that the central linewidth 2 of
the coexisting superfluid in the hydrodynamic re-
gime vanishes as (1 —T/T, )' = e' as the tricritical
temperature T& is approached. This result should
provide a fundamental test for tricritical-dynam-
ic-scaling theory in a superfluid.

The thermodynamic properties of 'He-'He mix-
tures in the tricritical region have been rather
completely characterized and static tricritical
exponents have been deter mined. ' ' Scattering-
intensity measurements of Leiderer, Watts, and

Webb, "for example, recently yielded tricritical
exponents' p=y+'-—v '=7) '=1.0 consistent with
static tricritical scaling theory. ' ' The experi-
ments generally confirm the theory of static tri-
er itical scaling.

Light-scattering measurements in tricritical
'He-'He mixtures reflect only concentration fluc-
tuations because the concentration dependence of
the refractive index overshadows its temperature
and pressure dependence. Consequently the di-
vergence of the scattered intensity on approach-
ing the tricritical point (T„x,) is due primarily
to concentration fluctuations and reflects the di-
vergence of the concentration susceptibility (Bx/
B&)»-e ', and effects of the correlation length

The corresponding sPectrum of the tri-
critical light scattering thus reflects the dynam-
ics of the decay of concentration fluctuations.

The theory of the spectrum of critical light
scattering in 'He-'He mixtures has been dis-
cussed by Gor'kov and Pitaevskii" and more re-
cently by Griffin" on the basis of two-fluid hydro-
dynamics. " They predict a Lorentzian Rayleigh
line in the superfluid phase of width I'=D,&&q' de-
termined by an "effective" diffusion coefficient
D,it and the scattering vector q = (4m/A. )sin8/2,
where ~ is the scattered-radiation wavelength
and 0 is the scattering angle. We can identify a
corresponding symmetrical kinetic coefficient
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FIG. 1. Sample cell for forward-scattering experi-
ment. Laser beam enters cell slightly below the inter-
phase II and passes through aperture slits 8 that are
inclined 45 to plane of drawing. Plane of incidence is
also slightly tipped from vertical. Exit apertures A

limit the viewed area. The exit beam is reQected by
mirror M to absorber B to avoid window scattering,
but M is displaceable by magnetic coupling for beam
alignment.
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LD ~ff —D,zz/(&&/ex)~. Recently Kawasaki and
Gunton" and Grover and Swift" have analyzed
the dynamical properties of the normal phases
of 'He-'He mixtures near the tricritical point by
using mode-mode-coupling theory. Grover and
Swift have applied these results to the superfluid
phase. "

Our measurements of the scattering spectrum
were car ried out in the same cryostat used" to
measure scattering intensities in 'He-'He mix-
tures. Light scattering is very weak in compari-
son with typical binary critical mixtures. ' There-
fore multiple scattering is no problem, but opti-
cal correlation spectroscopy is difficult, espe-
cially at the limited laser power (-1 mW) neces-
sary to avoid heating at cell windows. Hence our
precision cannot compete with many previous op-
tical-beating experiments, although it was good
enough to determine dynamical behavior well
within the region of static tricritical scaling. %e
used a photocounting technique and a digital cor-
relator (modified Saicor model 42) to compute
the autocorrelation function of the photon current.
The maximum counting rates were 200 counts/
sec with the viewed scattering aperture limited
to 1 t oherence area. Only the superfluid phase
scattered strongly enough for our spectral mea-
surements since (&6, /Bx)~ in the normal fluid
is an order of magnitude smaller.

Because q$ becomes large enough near T, to
enhance forward scattering, and because I' is
proportional to q' as anticipated in the hydrody-
namic limit, the scattering spectrum was mea-
sured at 0=15' to increase the number of photo-
counts per correlation time. At small l9 stray

FIG. 2. Rayleigh scattering spectra at 15 scattering
angle.

light scattering must be meticulously controlled.
In particular, scattering and reflections from
the interface that are concentrated close to the
vertical plane of incidence were avoided by tilt-
ing the plane defined by the scattered and inci-
dent beams a few degrees from vertical. In the
sample cell shown in Fig. 1 a background of
less than 10/0 over the investigated region was
achieved. Therefore we obtained essentially the
homodyne spectrum (of width 2I') with only a
negligible heterodyne component. To minimize
gravity effects" which generate a height-depen-
dent concentration deviating from the coexistence
curve, the scattering volume was placed only 0.2
mm away from the interface. The temperature
was held constant to +10 ' K for the time neces-
sary to equilibrate and to compute one datum

point, typically several hours. Temperature dis-
tances from the tricritical point, T, -T, were
determined independently to better than 0.1 mK

as described in earlier work. "
The resulting spectral widths of the intensity

scattered by the superfluid phase are shown in
Fig. 2. We have plotted I'/q' versus e for scat-
tering at 15' and laser wavelengths ~= 4880 and
6328 A, corresponding to scattering vectors q of
3.35&&10' and 2.59&& 10' cm ', respectively. The
solid line represents a fit

I /q'=1. 5x10 'e' ""~cm' sec '

The accessible temperature interval was limited
to 9&&10 '&e &7&&10 ' by gravity effects close to
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T, and by insufficient scattered intensities and short correlation times further away. The observed
correlation functions G(t) could be fitted by single-exponential decay times within the experimental un-
certainty, and the weight factors G(0) increased in proportion to the square of the intensity of the tri-
critical scattering as expected of the scattering by the concentration fluctuations. Thus our tricritical
Rayleigh-line spectra were clearly dominated by a single I orentzian of width determined by the tem-
perature and the scattering vector.

Ahlers and Greywall" have also noticed a divergence of the macroscopic equilibration time v,
~& ' "' for tricritical mixtures along the coexistence curve. It seems likely that this is the same
concentration relaxation process that is responsible for our Rayleigh narrowing.

A theoretical expression derived from two-fluid hydrodynamics for the central linewidth 2 in the
superfluid phase of 'He-'He mixtures"" may be written in the notation of Ref. 14 as

I' (Bb/Bx)»v+ pDT {x[8(o'/x)/Bx]»+(kr/T) (Bb, /Bx)»P
q' pTx'[8(o/x)/Bx]»'+ pC2„(8'/Bx)» (2)

where p is the density, o is the entropy, and C~, is the specific heat at constant pressure and concen-
tration, which remains finite at the tricritical point. " Thus the central linewidth j."=D,~~q involves
a complicated combination of the thermal conductivity K, the thermal diffusion ratio k~, and the mass
diffusion constant D. We note that macroscopic thermal-conduction measurements on 3He-'He mix-
tures determine an effective thermal conductivity"

pDT(x[8((z/x)/'Bx]»+(kr/T) (Bb, /Bx)~rP
K~gg = K+ (8«Bx)» (3)

The denominator of Eq. (2) goes to some finite
limit as T- T,. Our present measurements show
that Dgf f is proportional to &' and earlier mea-
surements" show that (8'/Bx)» is proportional
to &', indicating that Kgff remains finite as T-T,.

Application of mode-mode-coupling theory to
'He-'He mixtures by Kawasaki and Gunton" and

by Grover and Swift" gave tricritical exponents
in the normal phase for the mass diffusion coef-
ficient D, the thermal diffusion ratio k&, and a
thermal conductivity K,. Applying these results
to the coexisting superfluid phase gives

Do=~1/2 k o-6 1 and K fx:g-1/2 (4)

Kawasaki and Gunton" indicate that an exPeri-
mental thermal conductivity K measured in the
normal phase with no diffusion current remains
finite because of a cancelation of divergences.
We identify this ~ with the ~ of Eqs. (2) and (3)
and not with tc,'&." Since Eqs. (4) indicate that
the quantity in curly brackets in Eq. (2) goes to a
constant as e —0, the Rayleigh width in the coex-
isting superfluid is predicted to vary according
to

F/q2 /el+~el/2

where A and B are constants. Since we observe
r ~ E for 10 ' & e & 10 ', consistency of our data
with existing theory requires 4 = 1.2&& 10 ' cm'/
sec and B"4/10. The thermal relaxation time
observed by Ahlers and Greywall' 1 implies A.

=(1.33+0.03) X 10 ' cm'/sec, "a value in excel-
lent agreement with our scattering spectra.

Thus it appears that the Rayleigh linewidth,
which is unequivocably a manifestation of the
concentration-fluctuation spectra, is actually de-
termined by the ratio of an effective thermal con-
ductivity and the concentration susceptibility.
This result is a consequence of the coupling of
the He flux and normal-fluid flux in the two-
fluid hydrodynamics. ' ' ' Theoretical investi-
gations of the transport coefficients capable of
determining the relative size of 4 and B in Eq.
(5) or the existence of cancelations in Eq. (2)
have not to our knowledge been attempted for the
superfluid phase.
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I have determined with exact ground-state wave function and ground-state energy for a
one-dimensional plasma, with density-dependent short-range force. In particular, I am
able to approach the thermodynamic limit of finite density. and verify that the ground-
state energy is extensive, provided that there is a uniform density of neutralizing charge.

to be the exact ground-state wave function of an.V-body Hamiltonian with two-body potentials
only. For a one-dimensional system, in terms
of the logarithmic derivative y of l(,

v= 4'A,

the condition is

y(x)cp(y)+ y(y)y(z)+ y(z)y(x)

=f( )+f(y)+f( )

(2)

(3a)

In a previous paper, ' I presented the necessary
condition for a product wave function,

~= II IV(x;-x,)l',

cp
= ax + h /x, f = —ah —2a'x',

qr =alxl/x, f =--', a',

y = a eot(x/r), f = —,'a'.

(4a)

(4b)

(4e)

Note that, in principle, there is a solution for
case (4c) when r is imaginary. In fact (4b) might
then be considered as a limiting ease of (4c).
Such a potential corresponds to v(x) = (sinhx) '.

for any three numbers x, y, and z such that
x+y+z =0. (3b)

Equation (3) is a functional equation, which I
have been unable to solve in general. In Ref. 1,
particular solutions were discussed for the cases
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