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Light emission under near-resonant excitation by a pulsed optical field is described us-
ing a semiclassical (Bloch) model for the near-resonant transition. Adiabatic excitation
of this transition leads to Haman emission, whereas nonadiabaticity gives fluorescence.
The model describes quantitatively observed relaxation effects. It further predicts that
such experiments can determine the power spectrum of the correlation function charac-
terizing collisions, offering an alternative to off-resonance spectroscopy.

The availability of tunable pulsed lasers has
made possible the investigation of time-resolved
resonant scattering. For example, Williams,
Rousseau, and Dworetsky have recently reported
measurements on molecular iodine. ' In their ex-
periment a nondissociative transition is excited
by a quasirectangular argon-laser pulse and the
emission to a third level is time resolved, show-
ing both a fast component (Raman) and a slow
tail (fluorescence). The ratio of the strength of
these components was found to depend both on
pressure and on the tuning of the laser, at least
for small detunings, beyond which the ratio be-
came constant. Such behavior can be explained
using second-order perturbation and scattering
theories. " The purpose of the present comment
is to develop a simple model able to describe
such experiments quantitatively while clarifying
several concepts involved. In particular, it will
be shown that relaxation can be taken into ac-
count in a simple way and that time-resolved
scattering is related to the study of line shapes
far from resonance (off-resonance spectroscopy).
Furthermore, the analysis suggests some new
experiments.

Consider the nondegenerate three-level system
of Fig. 1(a). Transitions 1-2 and 2-3 are dipole
allowed, and the system is excited by an optical
pulse of frequency ~ close to ~». One is inter-
ested in the time dependence and in the frequency
of the spontaneous emission to 3. In the model,
the pair 1-2, described by a density matrix p

(a) (b)

FIG. &. (a) The three-level scheme of the simplest
scattering model; (b) the geometry of adiabatic fol-
lowing in the frame rotating at the field frequency ~.

whose elements obey a Bloch equation, ' evolves
under the inQuence of a classical field. Appro-
priate elements of p contribute to the emission
to 3, which is a well-known result that can be
derived from perturbation theory. ' Let f be the
normalized pseudospin (S„+iS„=2p»,' S,= p»
—p») in a frame rotating at the field frequency

It obeys the equation

df/dt =fx E t t —I"(f—fo),

where E,ff is an effective field whose x compo-
nent is the Rabi precession frequency 2tLP/h ($
is the field amplitude), and whose z component
equals —6=~» —(d, the frequency offset; I' ac-
counts for relaxation. The effective field makes
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an angle 6 with the —z axis, tan8=2ph/kS. Off
resonance, the polarization in the system 1-2 is
proportional to p» and precesses at the field fre-
quency co. The emission from 2 to 3, whose
amplitude is proportional to p», occurs there-
fore at frequency ~»+4; its intensity is propor-
tional to Ipypl On the other hand, in the absence
of coherence (p» =0), but with upper-state ex-
citation (p» 40), the emission intensity is pro-
portional to p» = (1+S,)/2 and takes place at fre-
quency cv». In the case of inhomogeneous broad-
ening, these conclusions remain valid for each
independent isochromat, as the Raman emission
is incoherent. These considerations can also be
extended to degenerate systems and more com-
plicated level schemes.

Consider now the evolution of the system of
Fig. 1(a) during and after the application of the
pulse, first neglecting relaxation. If 6 is suf-
ficiently large, the effective field varies slowly,
and f follows E,ff adiabatically. ' This will turn
out to be a very useful concept. For the angle
o. between f and E,ff to remain smaller than 6
[Fig. 1(b)], the condition Id6/dt!=nE, ff«E ff
has to be satisfied. For 4 constant this leads to
Ih 'dS/dtl «Ihl, which is just the condition that
the pulse be off resonance, i.e., its Fourier com-
ponents on resonance are relatively small. The
same criterion is derived from perturbation
theory. ' This being satisfied, Ifl =S=1 and S„
=2p»=2ph/hb. A pulse whose intensity is pro-
portional to S„'/4 = p. '8'/h'b. ' is radiated at fre-
quency ~»+b. At the end of the pulse, no co-
herent dipole remains and the emission termi-
nates. This process can properly be called Ra-
man scattering. On the other hand, if the pulse
is turned on nonadiabatically, the pseudospin
does not follow E,f&. Radiation is then emitted
both around the shifted frequency co,3+La~sl aQd

around the resoQant, frequeQcy 43~3. This follows
immediately when one considers the precession
of f in the rotating frame. For an arbitrary
pulse shape the result is complicated, especial-
ly in the. presence of inhomogeneous broadening.
When the pulse subsides, p» components will in
general remain. They emit. resonance fluores-
cence at ~», a phenomenon known in NMR by
the name of ringing. ' For inhomogeneous lines
and intermediate detunings, it is clear that part
of the line can produce Raman scattering while
another part produces fluorescence. In this
regime the ratio of these components will be a
strong function of detuning, as observed by Wil-
liams, Rousseau, and Dworetsky. '

One may now allow for collisional relaxation,
still assuming a pulse length much shorter than
radiative lifetimes. With 4 sufficiently large,
f follows E,«, but S is not conserved. From the
Bloch equation and the adiabatic-following ap-
proximation, one obtains

dS sin'6I cos'6 cos 8

—= —a(t)S + b(t). (2)

2p, T, t

(0& i& 7p).

During the pulse, radiation near co»+ 6 with in-
tensity proportional to Ip»l' = (S' sin'6)/4 is emit-
ted. It decays slightly, while radiation near ~,3

grows; its intensity is proportional to (1 —S)/2
for small 6. After the pulse 0=0, and only the
latter remains, decaying with the relaxation of
level 2. If ~~ is sufficiently short (~~«T, ), ex-
pansion of (3) shows that the ratio of resonance
fluorescence to resonance Raman scattering
equals 27~/T, . This is independent of 4 for con-
stant T, and is proportional to the relaxation
rate. ' It should be noted that emission at ~»
again corresponds to nonadiabatic excitation of
the pair 1-2, the nonadiabaticity being caused
here by collisions. The adiabatic-following prop-
erty of Raman emission has the further conse-
quence that the linewidth of the intermediate level
2 does not appear in the spectral width of the
scattered light.

Collisional relaxation in a dilute gas is treated
adequately by a binary collision approximation.
If FiA«~, ', the reciprocal of the mean collision
time, the line is a Lorentzian characterized by
a single relaxation time T, .' If 4 is further in-
creased, collisions become less effective in sup-

In the optical region collisions contribute to trans-
verse relaxation only and T, =v» the radiative
lifetime. In this model collisional relaxation to
close-lying levels is included in T, and the over-
all population of the pair 1-2 is accounted for
by rate equations. It will also be assumed that
the driving field is weak in the sense that (2pg/
hb)'«T, /T„and we will also specialize to the
case T,«T„ i.e., the line is strongly pressure
broadened. Then, for a quasirectangular pulse,
with a and 6 in (2) constant, one finds that

1 —5= 1 —— 1 —exp —at
b

a
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P,(~') = y(1+&v "7,') ', (5)

where cp is proportional to the collision fre-
quency. Therefore, the ratio of strengths 27~/T,
should decrease as the excitation frequency is
tuned further away from resonance. " This pro-
vides an attractive alternative to "off-resonance"
spectroscopy for the determination of T, ."

Our treatment also describes resonance scat-
tering and fluorescence from level 2 to level 1.
In this case, there is an important coherent con-
tx'1but1on that enhances the emis81on. Fox' sanl-
ples smaller than a wavelength, with inhomogen-
eous broadening and nonadiabatic excitation, the
enhanced emission at the resonant frequency
stops after a time comparable to the inverse of.
the excited part of the inhomogeneous width, and
can be restored only in an echo experiment. In
a, sample much larger than a wavelength, the
coherent dipole S„ is phased so that it describes
radiation in the forward direction only. It pro-
perly describes the index of refraction and super-
radiance effects. The Rayleigh- scattered radia-
tion is proportional to density fluctuations where-
as the nonadiabatic part can be called

fluoresc-

encee proper.
Further effects can be predicted in the case

where the direct 2-3 transition is forbidden, with
level 2 being able to relax to a. nearby level 4
from which transition to 3 is allowed. This
would, for instance, be the case when one excites
near resonantly the singlet manifold of an organ-
ic crystal while observing the triplet emission.
In this case, there will be no appreciable adia-
batic component whereas the delayed fluores-
cence will exhibit the strong temperature de-
pendence of the 2-4 relaxation, as well as its
frequency dependence.

plying or absorbing the energy =Sb, required to
produce the nonadiabatic excitation of level 2.
Indeed it is well known that no resonance fluores-
cence is seen in a Raman experiment far from
resonance. The frequency dependence of T, has
been treated adequately by Redfield and Bloch."
From the latter's treatment [Eqs. (4.58) to (4.60)
and (4.72)], using the adiabatic-following ap-
proximation, one obtains

T, '=2T, '+ Pg(b. '+4@.'h'/)t )'/'], (4)

where Q,(v') is the power spectrum of the quan-
tum-mechanical correlation function of the col-
lision operator. For collisions characterized
by a single relaxation time T„ the power spec-
trum is

In conclusion, the semiclassical model is ex-
tremely helpful for describing resonance scat-
tering. %ith careful handling, it provides quan-
titative predictions which agree with elaborate
quantum electrodynamical treatments. " The
association of Raman scattering with adiabatic
excitation and that of fluorescence with nonadia-
baticity is a new clarifying concept.

Thanks are due to the authors of Ref. 13 for a
preprint of their paper and for stimulating dis-
cussions.
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It is shown that singularities appear in the shape of the critical surface of Ising-like
spin systems for special interactions such as occur in the symmetric eight-vertex model.
The nature of the singularity and the connection with breakdown of universality are given.

Universality of critical behavior appears quite
naturally in the renormalization theory. ' How-
ever, the exactly solvable symmetric eight-ver-
tex model yields critical exponents which vary
continuously with the interaction parameters. '
Recently Nauenberg and Nienhuis3 determined,
by a renormalization calculation, the location of
the critical surface for a quadratic lattice in sur-
prisingly good agreement with the known critical
lines of the eight-vertex model. Their critical
exponents, however, are universally equal to the
Ising exponents, also along the eight-vertex cri-
tical lines, where the exact solution yields inter-
action-dependent exponents. In this note it is
shown that this discrepancy is due to the fact that
usual renormalization procedures'4 fail to ensure
the invariance of the antiferromagnetic ground
state. An improved renormalization scheme
yieMs new fixed points and eigenvalues, implying
a cusp in the critical surface at the intersection
of the ferromagnetic and antiferromagnetic sur-
faces (in which the eight-vertex critical lines are
located). Also a marginal eigenvalue appears,
indicating the existence of a line of fixed points,
along which the exponents may depend on the io-
teraction. The set of critical points with non-
universal exponents remains of lower dimension-
ality than the class of Ising-like critical points.

Consider a quadratic lattice with sites i and
spins s, = + 1. The general spin Hamiltonian X(s)
is written as

X(s)=g~ Q,s

where n stands for the type of the interaction ands, for the product pf spins of the sites involved

in the interaction; e.g. ,

3C i = K,gP s;s;+ ~

g, = A;g Qs,s;„

'+ &n.nri0 (0 s ~ +0) ~rV

(0x0& ~ )0( ~ 0

h.
( ~,+ 0 i ~ ~ 0) ~ (0'vr

'+ & n.n.n.
K3 '

(0 & ~ y 0)
v'

K)

I"IG. 1. Quadratic lattice with black and white sub-
lattices. K~ nearest nieghbor, K2 next-nearest neigh-
bor, and Kg a four-spin coupling. Cells involve e'ither
black or white sites.

@3 +Disisi+bisi+6 si+6

(the factor -1/kBT is included in the interaction
constants K„). X, is the (nearest neighbor) Ising
Hamiltonian, &, (involving only next-nearest
neighbor interactions) is also an Ising Hamilton-
ian for the uncoupled (black and white) sublattices
(Fig. 1) and X,+X, is the symmetric eight-ver-
tex model Hamiltonian. In Fig. 1 the interaction
types are shown. By flipping all the spins of a
sublattice one derives the following symmetry
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