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tional technique of this paper to the Gaussian
model, using the same recursion method as used
by Bell and Wilson. " For the Gaussian model,
the present method gives a K* which agrees ex-
actly with the critical coupling strengths and

gives precisely the right critical indices for all
values of dimensionality. Further study will be
required to establish why the errors of this pro-
cedure are so unexpectedly small.
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This equation and others assume that all the vari-
ables commute. A generalization to noncommuting
cases is easily obtained (see Ref. 5).

TProof that X+(p) - R'(u): Let 3:~(u) obey the lattice
symmetries and be defined by Eq. (7), in which V(p, o)

is odd under these symmetries. Then the standard
methods (Ref. 5) suffice to prove that

Tr+(p)e "~Tr X'(p)e
P

for any positive semidefinite X(p) which obeys the lat-
tice symmetries. Choose X(p) to be projection opera-
tor onto all configurations of the p lattice which are
equivalent to p under the symmetry operations. The
desired result then follows.
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ton (Ref. 3) to get rid of some 'Lard" terms.

K. Wilson, private communication; Th. Neimeijer
and J. M. J. van Leeuwen, Phys. Rev. Lett. 31, 1412
(1973), and Physica (Utrecht) 71, 1974; M. Nauenberg
and B. Nienhuis, Ref. 1; Kadanoff and Houghton, Ref. 3.

' T. L. Bell and K. G. Wilson, to be published.

Stability of the Critical Surface in Irradiated Plasma*f

E. J. Valeo and K. G. Estabrook
University of California, Lawrence Liverrnore Laboratory, Livennore, California 94550

(Received 17 December 1974)

The linear and nonlinear evolution of an instability of one-dimensional filaments in
plasma is investigated. The relevance of these results to two-dimensional breakup of
the critical surface in laser-plasma interactions is pointed out.

The possibility of obtaining self-trapped solu-
tions for radiation intensity in media which have

a nonlinear index of refraction is well estab-
lished. ' The question of the stability of these
states bears directly on their possible experi-
mental observation. For the case of filamentary
equilibria in plasma, it has been shown theoreti-
cally that such states are unstable to kink, or
bending, perturbations. '

We derive here the properties of another, fast-
er growing, instability of such filamentary struc-
tures in plasma. This instability is of the sau-
sage, or necking, type. We also demonstrate by
numerical solution of the nonlinear coupled elec-
tromagnetic and plasma-fluid equations that this

instability may result in the destruction of planar
symmetry of the critical surface in an expanding
irradiated plasma. Such a two-dimensional break-
up of the critical surface can modify the collec-
tive absorption mechanisms which occur there
and which play a central role in many laser-fu-
sion schemes. We note that the existence of this
instability in cubically nonlinear media has been
demonstrated by Zakharov' and Zakharov and
Rubenchik. ' These calculations do not allow a
determination of the growth rate, however, be-
cause either the inertia of the nonlinearity~' or
the parallel dispersion of the trapped wave' is
neglected. Both effects are important in the case
of electromagnetic radiation trapped in plasma.
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The equations we solve are the one-fluid plas-
ma equations

Bn—+V nv=0
Bt (la)

O'E/et' —c'V'E = —(4ve'/m)nE. (2)

Here E =E 2 = IEI and we assume everywhere
that &/&z =—0. The ponderomotive force term,
V(E'), describes the slowly varying momentum
transfer between radiation and plasma. The
brackets indicate an average over the short elec-
tromagnetic wave period 2m/~, .

We first analyze the stability of a static, one-
dimensional, plane-stratified, isolated, filamen-
tary equilibrium which varies with position in
the x direction only. With these assumptions,
Eq. (1b) can be solved for n(E') and the result
substituted into Eq. (2) to yield

L~, -=+ ', [1-n,exp(-E, ')] E,=O, (3)
d c

sv ~ ~ —gn
nM —+ v Vv = V(E') TV-n (1b)Bt 2m (d0

for the density n and velocity v, together with
the electromagnetic wave equation

kL&1,

c 2/L'( Q'( k'c'.

(4a)

(4b)

Here L is the scale length for variation of the
equilibrium. Use of inequality (4a) and the first
inequality in (4b) in the linearized form of Eq. (1)
facilitates the immediate solution for n which is
given by

n = —(c,/Q)'(d/dx)no(d/dx)EQ'.

Here the convenient notation E' has been intro-
duced through the assumed form for E as fol-
lows:

where the transformations 4me'n/me, '- n and

eE/v, (2Tm)'i'- E to dimensionless variables
have been made, n, has been introduced to des-
ignate n(E'=0), and the electric field has been
assumed to be of the form E(x, t) = W2E, (x) cos(~,t).
Additionally, the operator I 0 has been defined
as indicated by the outer braces. Equation (3)
has isolated filament solutions. "

In linear order, we assume variation with y and
t of the form exp(iky —iQt) and seek the eigenfre-
quency Q(k'). We adopt the following ordering
for k and Q:

E(x, y, t) =2 ' '[E'(x) exp(i(u, t)+E (x) exp(-iu), t)] exp(iky —iQt),

and I' '=—E' +E . The result for n is then substi-
tuted into the following linearized equations for

Q2 0LQ'+ ~ —k E' 22co+ =—2 02 nEO, (5a)

LQ + —
2

—k2 E —2—2u)+'=0.0 0
(5b)

where A.
' is defined by

fdx(dE, '/dx)' exp( —E,')
fdxE'

If the inequality kc/~, ( (c,X/~, )~' is also satis-
fied, then the dispersion relation becomes more
simply 0'=+gk, with an effective acceleration
g= c,cX/2.

We have developed a computer code FLUID which
advances the full nonlinear Eqs. (1) and (2).with

The dispersion relation is readily obtained from
these equations by exploiting the relative domi-
nance of I 0 with the result

0' 1 pq4 kg' ected' '

the addition of a term pV'v to the right-hand side
of Eq. (1b). This term is added to model ion dis-
sipative effects, but is chosen small enough to
have a negligible effect on the results presented
below. A leap-frog algorithm is used to advance
the equations. The boundary conditions are pe-
riodic in one direction (y), and transmitting for
the radiation but reflecting for the plasma in the
other (x).

The instability was studied under the ideal con-
ditions discussed above. The parameters were
as follows: initial peak field amplitude E,= 1.0,
plasma periodicity length L„=10k» thermal ve-
locity v„/c =0.1, and electron-to-ion mass ratio
m/M = 0.01. The filamentary equilibrium was
constructed from a numerical solution of Eq. (3),
where the parameter choice no = 1.58, E(0) = 1,
dE(0)/dx=0, yields an isolated filament. A
small level of random noise was initially super-
imposed on this otherwise static equilibrium.

A contour plot of the initial density profile is
shown in Fig. 1(a). A plot of the spatial Fourier
analysis of the density versus time, lfdxdy
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FIG. 2. Dots are observed values of instability growth
rate iQ versus y wave vector k for the simulation de-
scribed in Fig. 1. The solid line is an evaluation of the
dispersion relation, Eq. (6), for these parameters.

FIG. 1. Density contours at two stages of the evolu-
tion of the sausage instability. Parameters: maximum
ED=1.0, mass ratio m/M =0.01, periodicity length L
=10k,O, and electron thermal velocity v «/c =0.1. (a)
Contours at t =0. Density n =0.6n~ on the dashed con-
tour. (b) Contours after saturation at ~ot = 942. Here
n =0.3n~ on the dashed contour, and the small ellipti-
cal contours are near maxima. In both cases, ~
=0.3n ~ between contours.

xn(x, y, t) exp(iky) I, shows exponential growth of
the first eight modes for times ~ot & 780. The
observed growth rates are shown as points in
Fig. 2, where the dispersion relation, Eq. (6),
evaluated for these parameters, is plotted as a
solid line. The agreement is accurate to within
20%%uo for their first six modes, but the theory
evidently breaks down as kc/ur, =k/k, - 1, as is
to be expected. The linear phase is followed by
one in which energy is transferred to higher
mode numbers from the linearly fastest growing
modes, and finally by saturation. Figure l(b)
shows a contour plot of density at saturation.
The filament has evolved into a series of almost
circular cavities with radiation trapped inside.
Similar effects have been observed in investiga-

tions of Langmuir wave filaments in electrosta-
tic plasma in which the coupled nonlinear Schro-
dinger and ion-sound-wave equations have been
solved numerically. ' That the electromagnetic
and electrostatic results are comparable is not
surprising in view of the similar structure of
the two sets of equations.

The results of this model problem can be rele-
vant to the more realistic radiation-plasma in-
teraction problem in which radiation is incident
on an inhomogeneous plasma. To illustrate this
within the FLUID model, radiation was emitted
normally from the left (x) boundary onto a plas-
ma with an initial density profile which varied
linearly with position from n = 0.3 to n = 1.5 in a
distance 4x = 7X,. The peak electric field ampli. —

tude was E,=0.5 and the periodicity length L,
=7k,. The thermal velocity and mass ratio were
unchanged from above. Upon reflection from the
critical surface, the radiation sets up a standing
wave pattern. The plasma response to the re-
sulting spatial variation of the pondermotive
force is to form periodic density depressions as
shown in the surface plot of Fig 3(a). Th. ese de-
pressions are similar to the filaments discussed
above, ' and undergo the same two-dimensional
collapse observed in the model problem. The re-
sulting nonlinear state is shown in Fig. 3(b) at
time ~0/ =1130. The maximum density on the
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ing the critical density can lead to greater ab-
sorption than is predicted on the basis of results
for a planar critical surface.

We have verified that filament formation is an
intrinsic part of this two-dimensional evolution
by repeating the computation with all parameters
identical except for the initia1 density profile.
This varied discontinuously from n=0.1 to n=1.5,
so that a trough would not form. The radiation-
plasma interface remained planar in this case.

The instability is observed to occur for non-
normally incident radiation. It is observed to
occur independently in each of several troughs
when the initial density gradient is shallower;
that is, a series of "bubbles" forms in each of
several troughs with no apparent relationship in
their y positions to the y positions of those in
other troughs. These effects have also been
shown to occur for plasma which has an initial
density everywhere slightly less than critical.
We are continuing investigations along these
lines and are also studying the effects of absorp-
tion at the critical surface on these results.

We gratefully acknowledge useful discussions
with W. Kruer, B. Langdon, and B. Lasinski.
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FIG. 3. Surface curves of the density of plasma which
is irradiated normally from the left with radiation of
amplitude Eo ——0.5. The one-dimensional depre ssions
of (a) at ~t = 314 are drastically altered by the sau-
sage instability to those shown in (b) at ~ot =1130. Pa-
rameters: incident amplitude Ep =0,5 initial density
variation linear from n =0.3 to n = 1.5 in a distance Qx
= 7Xp, periodicity length L&= 7Ap thermal velocity v«/
c=0.1, and mass ratio m/M=0. 01. Arrows indicate
the critical density level.

side of these cavities exceeds the critical density,
again partially trapping radiation in them. At
later times, because of plasma expansion, the
structure elongates in x. Such tubular density
cavities with boundary densities near or exceed-
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