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the direction of spin alignment in the A, phase
is opposite to that which is predicted using weak-
coupling theory. The magnitude of the linear
splitting calculated using spin-fluctuation theory
with 1 —IN(eF) =~, (ug =eF/20, and N(eF)V = 4.0—
(and the RPA approximation for p, '") is about
4 times larger than that measured experimen-
tally; in weak-coupling theory, the calculated
splitting diff ers from the experimental one by
a factor of more than 25. While there are, at
present, no measurements which can verify this
prediction, it should shortly be possible" to as-
certain the direction of the spin pairs in the A,
state.

Useful conversations with D. L. Mills and
K. Maki are gratefully acknowledged.
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The validity of the static approximation for para-
magnon-induced singlet-state pairing (when vertex cor-
rections are not included and there are no "feedback
effects") has been discussed in detail by N. F. Berk and
J. R. Schrieffer Isee, for example, . Phys. Rev. Lett. 17,
433 (1966)) who find that Z - 1-1V(cF)Ilnb -N(t..F)I]
which is not a small correction. However, because of
additional complications, dynamical effects have yet to
be included in a self-consistent treatment of superfluid
3He.

Higher order (in I) terms lead to unphysical expres-
sions for p . It is believed that this behavior arises
because of the inapplicability of the static approxima-
tion and the neglect of vertex corrections. While more
elaborate calculations may be required to incorporate
these effects, they are outside the scope of the para-
magnon theories which have been previously discussed
and which it is intended to explore here.

' A similar cancelation in the free-energy parameters
was independently found by S. Engelsberg, W. F. Brink-
man, and P. W. Anderson, Phys. Rev. A 9, 2592 (1974),
but the experimental implications were not noted.
"J.C. Wheatley, private communication.
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Approximate recursion relations which give upper and lower bounds on the free energy
are described. "Optimal" calculations of the free energy can then be obtained by treating
parameters within the renormalization equations variationally. As an example, simple
lower-bound relations are defined for the two- and three-dimensional Ising models. At
the fixed point, a parameter is set variationally, and then critical indices are calculated.

Several recent papers' have followed up on the
pioneering work of Wilson in using the renor-
malization group to perform approximate calcu-
lations of the free energy. In general, the prob-
lem is to calculate a free energy E„(K) for a sys-
tem with N degrees of freedom and a set of cou-
pling constants K, starting from a Hamiltonian
XK(v), in which the o represents some set of sta-
tistical variables. A renormalization transfor-
mation K' =A(K) defines a new set of coupling
parameters as a function of the old parameters. &'(p, ) = —ln Tr exp[S(p. , o) —K„-(&)].. (2)

The K' defines couplings in a system with fewer
degrees of freedom, N' &N, described by a new
set of variables which we call p, . The special
property of this transformation is that it leaves
the total free energy invariant, i.e.,

S„(K)= I „/R(K)). (1)

To realize such a transformation, define E„(K)
= —ln Tr, exp[-XK(v)j and construct a new Ham-
iltonian as
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F„,(R'(k)) ~„,(R(k)) o- z„(R'(k)). (5)

Note that if one uses upper (lower) boundary re-
cursion relations in the sequence of calculations
described by Eqs. (3), the resulting limit (4) will
be an upper (lower) bound to the true free energy
Furthermore, any parameters in Rv or Ri (in-
cluding parameters in S) can be varied so as to
obtain optimum bounds on E„(K).

The standard variational principles in statis-
tical mechanics' define appropriate R and Fi', .
Define a variational function H, (p. , v) which in-
cludes the basic symmetries and obeys Tr
xexpH, (p, , o) = 1. Then notice that'

Xv(p, ) = —Tr, ex [pH(p, o)]

x [S(p,, g) —XK(o) —X (p, o')]

must equal or exceed X'(p, ) for all values of p,—if K and S are held fixed. When 3P is param-
etrized in terms of K', Eq. (6) generates a re-
cursion K'=Rv(K), which certainly obeys Eq. (5).
Similarly define

X~(p. ) = —ln Tr,
xexp[S(p. , o) —X-„(o)+ V(y. , o)]. (7)

If we demand that V(y. , o) is a sum of terms which

If S(p, o) obeys the restriction Tr„expS(p, o) = I,
then $C' and $C~ have exactly the same free energy.
If the set of parameters K is sufficiently inclu-
sive so that all conceivable Hamiltonians which
obey a given symmetry' can be represented as
XK(o), and if in addition S(p., o) obeys this sym-
metry, then X'(p) must also be expressible as
X„-,(p, ) for some value of K'. In this way, one
realizes the renormalization group mappings.

A most important part of the Hamiltonian XK(cr)
is a constant term, which I define to be -NEO.
In the evaluation of the free energy, one visual-
izes an infinite number of renormalizations

k =R(k -'), k'=k.
After many renormalizations, the trivial term
K, will grow in magnitude, and, dominating all
else, will provide an evaluation of the free ener-
gy as

l „(K)=—limN~K, . (4)

Thus, if 8 is known, E can be computed. "
But 8 is not known. Instead, I seek a prescrip-

tion for constructing upper and lower "bounding"
approximations to R denoted as R" and Bi, which
respectively have the properties

are each odd under a lattice symmetry operation
and that Xi obeys all the symmetries, then X. (p, )
(X (p, ) for all values of p. (This statement is
easily proved. ') We can then once more param-
etrize in terms of K' and say that Eq. (7) gener-
ates a recursion relation K' =R~(K) which obeys
Eq. (5).

It is relatively easy to see how to derive upper
bounds via Eq. (6). The transforms used in Kad-
anoff and Houghton can easily be modified to fit
into the form (6). It is harder to see that the
form (7) is also usable. To write an odd repre-
sentation of V, take V(p, , o) = V, (o)+ V, (p.). De-
fine a set of functions s, , (o) in which the index i
defines different kinds of terms- = e.g. , nearest-
neighbor products or products of four spins in a
square. Then j is essentially a position variable
which distinguishes among different- Out equiva-
lent - .erms. Now a suitable V, can be written as

V, (o)+Qv, (i,j)s, ,(o), (6)

X-,= — Q QZ, s,.
squares z

(9)

Every fourth square contains a new spin —
]LI, . I

call these red squares. I choose (see Kadanoff
and Houghton ) an S which depends upon a varia-

with Q,.v, (i,j)=0. Also, V, can be written in
exactly the same form.

Notice that in Eq. (7) V, (o) is added to XK(o).
Then eve noway say that V& changes XK by moping'
equivalent interaction bonds to different portions
of the lattice. A suitable choice of V, will break
the bonds which connect spins in different regions
of the lattice. Then the entire sum in Eq. (7)
factorizes into a product of independent terms
which each ean be summed exactly.

Once the sum is calculated, in general X (p)
will not obey the lattice symmetries. But since
V, (p) is antisymmetric, a suitable choice of V,
can always be found which will force Xi(p) to
obey the symmetries. This Xi(p, ) is then used
to calculate the new couplings K'=Ri(K).

For illustrative purposes, in this paper I carry
through a simple example of this calculation on
the square lattice as shown in Fig. 1. Within
each square, I can define spin operators, s„s„
s4 are respectively the sums of all possible pro-
ducts of I, 3, and 4 spins in the square; while
s„„and s„«are respectively sums of products
of all nearest-neighbor and next-nearest-neigh-
bor pairs of spins. I write
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FIG. 1. Recursion setup on the d=2 lattice. The
"red squares" are those with p sites at their centers.

tional parameter, p:

S(I, o) =
red

square s

(@ps, —Qu, s,.). (10)

Here, the u's are functions of p chosen so that
Q,.u,s, = ln(2 coshps, ). Then, these terms in S in-
sure that the sum over p. of e~ is exactly 1 so
that the transformation preserves the value of I.
Moreover, when p is well chosen, these terms
will tend to subtract away some of the strongest
terms in X.K, leaving a weaker and more tract-
able interaction.

However, some interactions must still be
moved in order to make the sum in Eq. (7) tract-
able. To eliminate all the interaction terms in
the red and green squares, choose

'-K,-+u, in red squares,

v, (i,j)= ' -K, in the green,

3K,. -u; in the blue.

Since all interactions now lie in the blue squares,
the sum (7) can be split into a product of sums
over blue squares. Each such sum contains only
sixteen terms and can easily be calculated on the
computer. These partial sums produce new cou-

plings of up to four spins of exactly the form (9).
[Since the resulting 36~(IL) obeys the lattice sym-
metries, V, (p) is zero. ] Therefore, by calculat-
ing some rather simple sums, I have found a low-
er -bound recursion relation.

Exactly the same approach may be applied to
the simple cubic lattice. If the lattice sites are

j=k, , I, the red cubes are centered at r = 2(j,
k, l)+ (

—„—,', —,') and the blue at r = 2(j, k, l) —(—,', —,', —,').
Here there are 22 basic interactions within the
cube instead of the six which occur in the square.
Everything else is the same as for d= 2.

I use the approximate recursion relation to dis-
cuss critical behavior by considering the neigh-
borhood of the fixed point. For each p, there is
a fixed point K*(p) defined by K*(p) =R~~(K*(p)).
To fix p, I use the condition that the best p should
make the free energy an extremum for fixed K.
In particular, I write the recursion relations

K"= [Z„„'](Z+(p)).

In general K, -K,(p) will. grow as 2'"g(p)Ap for
large n and small Ap. (See Wegner's' eigenvalue
analysis of deviations from criticality. ) The ex-
tremum condition for the approximation is that
g(p) = 0. In two dimensions this is satisfied at
p =p*=0.76.

Now fix p at p*. Calculate the remaining eigen-
values of the approximate recursion relation.
Use the standard" formulas to calculate the crit-
ical indices 6 and n from these eigenvalues. The
resulting calculated indices are shown in Table I.
In the three-dimensional case, the errors in my
estimated indices are totally unknown. In two
dimensions, I have achieved comparable accur-
acy with previous work~ by using a recursion cal-
culation which is very much simpler than that
used heretofore.

The procedure outlined in this paper gives bet-
ter numerical results than one might have ex-
pected a priori. Why? I am not sure. To investi-
gate this point further, I have applied the varia-

TABLE I. Calculated values of critical indices. The exact values come from the On-
sager solution of the two+imensional Ising model.

Parameter

d=2
Calculated

value
Exact
value

Calculated
value

"Accepted"
value

15.04
1.998

15.0
2.0

4.818
1.887

5.0 + 0.2
1.875
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tional technique of this paper to the Gaussian
model, using the same recursion method as used
by Bell and Wilson. " For the Gaussian model,
the present method gives a K* which agrees ex-
actly with the critical coupling strengths and

gives precisely the right critical indices for all
values of dimensionality. Further study will be
required to establish why the errors of this pro-
cedure are so unexpectedly small.

*Research supported in part by the National Science
Foundation.
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The linear and nonlinear evolution of an instability of one-dimensional filaments in
plasma is investigated. The relevance of these results to two-dimensional breakup of
the critical surface in laser-plasma interactions is pointed out.

The possibility of obtaining self-trapped solu-
tions for radiation intensity in media which have

a nonlinear index of refraction is well estab-
lished. ' The question of the stability of these
states bears directly on their possible experi-
mental observation. For the case of filamentary
equilibria in plasma, it has been shown theoreti-
cally that such states are unstable to kink, or
bending, perturbations. '

We derive here the properties of another, fast-
er growing, instability of such filamentary struc-
tures in plasma. This instability is of the sau-
sage, or necking, type. We also demonstrate by
numerical solution of the nonlinear coupled elec-
tromagnetic and plasma-fluid equations that this

instability may result in the destruction of planar
symmetry of the critical surface in an expanding
irradiated plasma. Such a two-dimensional break-
up of the critical surface can modify the collec-
tive absorption mechanisms which occur there
and which play a central role in many laser-fu-
sion schemes. We note that the existence of this
instability in cubically nonlinear media has been
demonstrated by Zakharov' and Zakharov and
Rubenchik. ' These calculations do not allow a
determination of the growth rate, however, be-
cause either the inertia of the nonlinearity~' or
the parallel dispersion of the trapped wave' is
neglected. Both effects are important in the case
of electromagnetic radiation trapped in plasma.
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