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It is shovrn within the context of simple paramagnon theory that if spin fluctuations are
responsible for the pairing in superQuid He, then the direction of paired spins in the A&
phase should be opposite to that of the field-induced magnetization in the normal state,
in contradiction to predictions made using vreak-coupling theory. Measurements of the
direction of paired spins in the A& phase can thus help to test the paramagnon-pairing
hypothesis.

The interaction via spin fluctuations of two 'He
atoms has been shown to be attractive when the
pair is in a state having odd angular momentum. '
It has been suggested that this attractive interac-
tion is responsible for the two superfluid transi-
tions which have been observed in 'He. Experi-
mental evidence in support of this hypothesis is
indirect. Anderson and Brinkman, ' as well as
other groups, ' have pointed out that spin-fluctua-
tion-induced pairing must be treated within the
framework of a new kind of a "strong-coupling"
theory: The paramagnons which mediate the pair-
ing must also be modified as a result of the pair-
ing. This "feedback effect" gives rise to a dif-
ference in the free energies of the Anderson-Mo-
rel and Balian-Vferthamer states. '

%'e believe that this recently proposed mecha-
nism fol superfluidjtty ls sufficiently novel that lt
deserves further study and experimental confir-
mation. It is the purpose of the present note to
demonstrate that there exists a concrete experi-
ment which can provide a strong test of the para-
magnon-induced-pairing hypothesis. We confine
ourselves here entirely to spin-fluctuation theo-
ries of the "paramagnon, " as distinguished from
"Fermi liquid, " type in which the enhancement
factor is roughly 20 at a pressure of 27 atm. The
paramagnon theory of normal 'He is strongly sup-
ported by experiments of Meyer and co-workers
on the normal-state He susceptibility which give
an excellent fit to the calculations of Heal-Monod,
Ma, and Fredkin' with no adjustable parameters.

In order to find an experimental test of the para-
magnon-induced-pairing hypothesis we derive
the gap equations for superfluid 'He in the pres-
ence of a uniform, static magnetic field, K, us-
ing the spin-fluctuation theory, previously dis-
cussed by Anderson and Brinkman, ' extended to
the case H4 0. From the gap equations the tran-
sition temperatures are calculated and the nature
of the paired states in the presence of a field is
discussed. The paramagnon-induced attractive
interaction is field dependent. This field depen-
dence is analogous to the feedback effect men-
tioned above and results from the fact that the
paramagnons, which mediate the pairing, are
modified in the presence of a magnetic field.
This behavior is in contrast to that which one ob-
tains for ordinary (yhonon-induced) superconduc-
tivity. Because of these effects, studies of the
behavior of the system when II4 0 should help to
provide insight into the pairing mechanism in He.
In particular, it will be show»e~ow that the pr
dieted direction of alignment of the paired spins
in the A, phase is different in spin-Quctuation
and weak-coupling theori, es.' Thus a measure-
ment of this spin direction should provide a strong
test of the spin-fluctuation hypothesis.

The gap equations for paramagnon-induced pair-
ing are obtained by analogy with ordinary phonon-
induced superconductivity. The generalized
Green's function is related to a generalized self-
energy using the equations of motion for the 'He
atoms. The self-energy is then written approxi-
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mately in terms of the Green's function using only
the paramagnon diagrams. For the phonon case
this scheme is equivalent to the self-consistent
Hartree-Fock approximation and because of Mig-
dal's theorem, it is accurate to lowest order in
(m/M)"', where rn and M are the electron and
ion mass, respectively. For the paramagnon
case an additional approximation will be used
here for simplicity: the static approximation in
which the self-energy is assumed to be frequency
independent. Thus the quasiparticle renormaliza-
tion factor Z is taken to be unity. This follows
the approach of Anderson and Brinkman. ' The
validity of this approximation scheme for the
case of paramagnon-induced pairing will be dis-
cussed in more detail in a later publication. '

The generalized Green's functions, defined as
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where (,"=g, and (, '=(,t, are rela, ted to the
self-energy Z„. (%) as

0 0
FIG. 1. Diagrams which contribute to the (normal and

I
anomalous) self-energy Z «.~~ within the paramagnon
approximation.

G, ' (p)=[a, +~ —p,,vH —Z, ' (-k)][&„+~+p,vH —&, ,' (-k)]/D, (p),
G „+'(P)=Z„+'(%)[e,—~+Ij.,oH —Z, ,' (0)]/D, (-P),

(2)

G .."(P)=~ .."'(k)[~,-~ —IL.QH-~. .' (&)]/D.(-P),
where

D (p)=([e„su —p-vH —Z ~' (k)][a„+(u —p~vH —Z«+ (-k)][6~+~+p, &H —+ 0 ( —~)]

+ I~.."(~)I'[~,+~+~.oH- ~-.-.' (-&)]+l~. ."$)l'[~,+"-v.oH —~..' (-&)] (5)
ln Eqs. (l)-(5), o=+ i (- 1) corresponds to spins with z components parallel (antiparallel) to the exter-
nal field and ~, is the single-particle energy measured relative to the Fermi energy.

In paramagnon theories of 'He, it is assumed that the Hamiltonian of the system consists of a nonin-
teracting term and a phenomenologically derived local interaction which describes the repulsion (of
strength I) between opposite-spin atoms. This term leads to an indirect attractive interaction between
atoms in the spin-triplet state. To obtain order-of-magnitude agreement between theory and experi-
ment in estimates of the superfluid transition temperature, it must be assumed that there is an addi-
tional repulsive term, V„acting between parallel-spin atoms. The diagrams which are included in
obtaining the self-ener'gy within the paramagnon approximation are shown in Fig. 1. It should be noted
that the propagators in the diagrams (represented by solid lines) are assumed to depend on the self-en-
ergy and on H. This dressing of the Green's functions represents the feedback effect mentioned above.
The dashed lines in Fig. 1 represent the interaction I. From these diagrams and Eqs. (2)-(5) we have
obtained a set of coupled equations for the components of the self-energy Z,++, Z ', Z „+'. In the
case of zero magnetic field the ladder sums indicated in Fig. 1 may be summed explicitly to yield equa-
tions which are equivalent to those derived independently by Kuroda. ' In the presence of a magnetic
field the equations for the components of Z are considerably more complicated than in the zero-field
ease. The discussion of the general field-dependent gap equations will be omitted here. In the remain-
der of the present paper the field-dependent gap equations in the small-gap limit are derived and the
A. , transition temperature is obtained.

In the small-gap limit the normal component of Z, which appears in the gap equations, is independent
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of the anomalous component. On performing the frequency sums in the self-energy equations it follows
that

@3k' I2X, '
2" (2~)' 1-I'q

p(&, -&„' —oy, H
2

"(R')
(6)

x 1 [tanh2p(e„—opoP'-Z~~+ ) « tanh2p(e~, +opoP g +-)]'2
where p=(k&T) '. A similar equation can be written for the normal self-energy g, + (y). In the above
equations we have neglected the wave-vector dependence of the normal part of the self-energy since
the dominant contribution comes from Ik l-k&, where kF is the Fermi wave vector, and we have used
the fact that

I&.-."(k)I = I&-.."(k)l.
The susceptibility functions are given by

X, '(P)=if(2n) «d«P'G„+ (k+2', ~+~')G„' (k', +'),

X, '(P)=X, '(P)=if(2n) «d«P'6„' (k+k', (o+cu')G, ; (k', (o').

As can be seen from Eqs. (2)-(5), these susceptibilities are clearly P dependent. Considering terms
of lowest order in IJ, it is convenient to define an effective magnetic moment for the system as

V'"=V.(1+d ~~~' &d&.H) ~

grithtn the RpA' p, "~=tL, [1-IN(e F)] ', where N(e F) is the density of states at the Fermi energy. The
field-independent part of Z„' may be included in the Fermi energy and will thus be ignored in the re-
mainder of the paper. It may be seen from Eqs. (8) and (9) that the quantities (y,'y, ') and y,

' have no
linear terms in H. Hence the leading powers of H which appear in Eqs. (6) and (7) are of order (p,H),
and (p,H), respectively. Since the linearized gap equations represent derivatives of the Landau-Ginz-
burg free energy, it can be seen that Eqs. (6) and (l) are consistent with the general form of the field-
dependent free energy discussed by Ambegaokar and Mermin. '

In the Anderson-Morel state it is assumed« that the % dependence of the anomalous self-energies is
given by spherical harmonic functions Y, , (k), for l = 1. By use of the quadratic approximation for the
susceptibility y, ', the k' integration in Eq. (6) may be readily performed and the transition tempera-
tures T, (P) and T, (P) calculated. Following the notation of Ambegaokar and Mermin'

T, '(H) = 1.14(@&exp/- [V,(P)N(e F+ op, 'f'H)] '}, (10)

where cuz is the spin-fluctuation frequency and V, (H) is the effective spin-dependent pairing interaction
strength which is obtained from Eq. (6) by decomposing the quantity in the brackets into spherical har-
monics and projecting out the Y, ,(k)Y, ,*(k') component:

V.(H) =N(e, ot "'P)I, —el '"(P-i~,) N(~ F) I, —V. (11)

In weak-coupling theories V,(P) is independent, of II and o. Here V is related to V, which is the non-
spin-fluctuation contribution to the potential, discussed earlier. For IN(e z) = 1,

I, = —
& I'in[1 -I'N'(e F)] (12)

I =-'I'+-'I'[1-I' N'(e )]In[1-I'N'(~ )] (13)

It can be seen that in the large-enhancement limit I,»I,. Thus it follows from Eqs. (20) and (&&) that
the spin-fluctuation contribution to the field dependence of T,'(H) is essentially zero. " The non-spin-
fluctuation part of the interaction which is of the same magnitude as N(e „)I„therefore, determines
the field splitting of the A transition. Since the latter interaction is repulsive (V) 0), it follows that
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the direction of spin alignment in the A, phase
is opposite to that which is predicted using weak-
coupling theory. The magnitude of the linear
splitting calculated using spin-fluctuation theory
with 1 —IN(eF) =~, (ug =eF/20, and N(eF)V = 4.0—
(and the RPA approximation for p, '") is about
4 times larger than that measured experimen-
tally; in weak-coupling theory, the calculated
splitting diff ers from the experimental one by
a factor of more than 25. While there are, at
present, no measurements which can verify this
prediction, it should shortly be possible" to as-
certain the direction of the spin pairs in the A,
state.
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Higher order (in I) terms lead to unphysical expres-
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because of the inapplicability of the static approxima-
tion and the neglect of vertex corrections. While more
elaborate calculations may be required to incorporate
these effects, they are outside the scope of the para-
magnon theories which have been previously discussed
and which it is intended to explore here.

' A similar cancelation in the free-energy parameters
was independently found by S. Engelsberg, W. F. Brink-
man, and P. W. Anderson, Phys. Rev. A 9, 2592 (1974),
but the experimental implications were not noted.
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Approximate recursion relations which give upper and lower bounds on the free energy
are described. "Optimal" calculations of the free energy can then be obtained by treating
parameters within the renormalization equations variationally. As an example, simple
lower-bound relations are defined for the two- and three-dimensional Ising models. At
the fixed point, a parameter is set variationally, and then critical indices are calculated.

Several recent papers' have followed up on the
pioneering work of Wilson in using the renor-
malization group to perform approximate calcu-
lations of the free energy. In general, the prob-
lem is to calculate a free energy E„(K) for a sys-
tem with N degrees of freedom and a set of cou-
pling constants K, starting from a Hamiltonian
XK(v), in which the o represents some set of sta-
tistical variables. A renormalization transfor-
mation K' =A(K) defines a new set of coupling
parameters as a function of the old parameters. &'(p, ) = —ln Tr exp[S(p. , o) —K„-(&)].. (2)

The K' defines couplings in a system with fewer
degrees of freedom, N' &N, described by a new
set of variables which we call p, . The special
property of this transformation is that it leaves
the total free energy invariant, i.e.,

S„(K)= I „/R(K)). (1)

To realize such a transformation, define E„(K)
= —ln Tr, exp[-XK(v)j and construct a new Ham-
iltonian as
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