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of "'Hg a moment of inertia of about twice that
of the ground-state band was necessary to repro-
duce the experimental energies. The success of
these calculations demonstrates that decoupling
is important for these negative-parity bands and
is not necessarily restricted to the highest-j par-
ticles.

Calculation of the positive. -parity two-quasipar-
ticle bands are considerably more difficult be-
cause of effects associated with the inclusion of
seniority- zero states. Preliminary calculations
indicate a decoupled-band structure similar to
that seen in the negative-parity bands. It is strik-
ing that for all the nuclei considered here, the
excitation energies and apparent moments of in-
ertia are similar for both the negative-parity de-
coupled bands and the positive-parity yrast bands
above the backbend. This similarity comes nat-
urally from the above decoupling picture whereas
the Coriolis antipairing effect does not predict
the existence of the negative-parity band.

All the above facts strongly suggest that in
these nuclei the backbending is primarily due to
the crossing of a decoupled, two-quasiparticle,
positive-parity band and the ground-state, zero-
quasiparticle band, as proposed by Stephens and
Simon. 4

*Work supported by the National Science Foundation.

)Work supported by the U.S. Atomic Energy Commis-
sion.

R. A. Sorensen, Bev. Mod. Phys. 45, 353 (1973).
A. Johnson and Z. Szymanski, Phys. Rep. 7C, 182

{1973).
B.R. Mottelson and J. G. Valatin, Phys. Rev. Lett.

5, 511 (1960).
4F. S. Stephens and B.S. Simon, Nucl. Phys. A183,

257 (1972).
5C. Flaum et al. , in Proceedings of the International

Conference on Nuclear Structure and Spectroscopy,
Amsterdam, The Netherlands, l974, edited by H. P.
Blok and A. E. Diepernik (Scholar's Press, Amster-
dam, 1974), Vol. 1, p. 122.

R. M. Diamond et al. , Phys. Bev. Lett. 16, 1205
(1966).

J.E. Clarkson et al. , Nucl. Phys. A93, 272 (1967).
P. Thieberger et al. , Phys. Rev. Lett. 15, 972

(1972).
9K. Nakai et al. , Phys. Lett. 44B, 443 (1973).
B.E. Chi, private communication, and Nucl. Phys.

83, 97 (1966).
iiC. J. Gallagher, Jr. , and S. A. Moszkowski, Phys.

Rev. 111, 1282 (1958).
i2H. Rotter et al. , Nucl. Phys. A133, 648 {1969).
i~D. Ward, B.M. Diamond, and F. S. Stephens, Nucl.

Phys. 117, 309 (1968).
B.A. Warner and J. E. Draper, Phys. Rev. C 1,

1069 (1970).
Table of 'Isotopes, edited by C. M. Lederer et al.

(Wiley, New York, 1967), 6th ed. , and references con-
tained therein.

i6A. W. Sunyar et al. , private communication.
Y. Gono et al. , Phys. Lett. 49B, 338 (1974).
H. Beuscher et al. , Phys. Rev. Lett. 32, 843 (1974).

Theory of the Rainbow*

V. Khare and H. M. Nussenzveig
Institute for fundamental Studies, Department of physics and Astronomy, University of Itochester,

ochestey', Nezu Fo& 14627
(Received 5 August 1974)

A new theory of the rainbow is proposed and compared with the exact Mie solution.
There is good agreement over a much broader range of angles and size parameters than
for the Airy theory. The improvement is particularly remarkable for electric polariza-
tion. The treatment can be extended to atomic, molecular, and nuclear rainbow scatter-
ing.

The problem of high-frequency scattering by a
homogeneous sphere has many important applica-
tions, ' and it presents considerable interest in
connection with optical-model, eikonal, and
Regge-pole approaches to atomic, molecular,
and nuclear scattering. Rainbow scattering, in
particular, is a very general effect'; 'it has been

observed in all these cases and it provides val-
uable information about the nature of the inter-
action. ' For electromagnetic scattering, evalua-
tion of the exact Mie solution' requires summing
a number of partial waves aP = ha (h = wave num-
ber; a=sphere radius). Manageable and accurate
approximations for Pa 10' are clearly desirable.
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The asymptotic techniques previously developed
for a scalar field' have been extended to the elec-
tromagnetic problem, and a detailed comparison
with exact results is under way. ' Here we report
results for the rainbow region.

According to Van de Hulst, ' Airy's classical
theory of the rainbow, ' the best approximation so
far available, may be applied only for J3 & 5000
and I &I s 0.5', where e =8 —8a is the deviation
from the rainbow angle 8„(8„=137.5' for refrac-
tive index N = 1.33).

Let S, (P, 8) and S,(P, 8) be the scattering ampli-
tudes' for magnetic and electric polarization, re-
spectively. The corresponding intensities i,.
= IS;I' (j =1,2), together with the phase differ-
ence 5 = argS, —argS„completely characterize
the scattering. '

As in the scalar treatment, ' a modified Watson
transformation is applied to each term in the

Debye multiple internal reflection expansion of
the Mie series: S,. =S,. "+S,. ' +S,~"+. . . . The
(primary) rainbow occurs in the third Debye term
S, ', associated with rays that undergo a single
internal reflection. Classifying different scatter-
ing-angle regions according to the number of geo-
metrical rays emerging in the same direction, it
corresponds, in this term, to a transition be-
tween a two-ray region and a zero-ray (shadow)
region. In the complex angular momentum plane,
this is reflected in the confluence of a pair of
real saddle points' and their becoming complex.
When the ranges of two saddle points overlap, the
ordinary saddle-point method can no longer be
applied. A uniform asymptotic expansion is ob-
tained by the Chester-Friedman-Ursell (CFU)
method. '

In the rainbow region, the dominant contribu-
tion to S„~'~ is given by

S, (P 8) = —&"4N(wsin8) ' '»' E (P 8)

+,(P, 8) = fg, (w, ) exp[»f (w „8)]dm„

f(ce„8)=i (2N cosa, —cosw, + [2w, —w, —2(m —8)] since, ),

g, (~, ) = (sinu, )' m cosm2 cos'so, (cost@, —mN cosw, )(cosa, + mN cosset, ) ',

(2)

(4)

where»=2p, m =1 for j=1, m =N for j=2, and psinm, =Npsinw, =A. is the complex angular momen-
tum. The two real saddle points in the two-ray region, M, = 0, ' and ivy —~y correspond to the two an-
gles of incidence associated with geometrical rays emerging in the direction 8. The path of integra-
tion in (2) goes through these points and is the same as in the scalar case [see Ref. 5, Pt. II, Eq. (4.3)].

The CFU method leads to

E,.(p, 8) =2'» "'exp[»A(e)]([po,.(e) —» '(q„.(e)+2&(e)q„(e))+0(» ')]Ai(»"'0(&)}

—» "'[q„(e)—2» 'p„(e)+0(» ')]Ai'(»"'g(e))),
where, as in the scalar case, '

= f[N(cos82 + cos82 ) —iz(cos8i' + cos8i")],A(e)
2

g ~ 3/2

(5)

TABLE I. CFU coefficients for N = 1.38, j g ) «K

Coefficient j=2

pp, (c)

qp,-(~)

q~&(e)

P2q(~)
qp;(~)

i [0.0881—0.031&
—0.19& ]

0.0227 —0.15'
—0.59&

0.40+ 8.0q
—1.4i
—4.1

i [0.00786+ 0.046&
—0.078' ]

0.108—0.015&
—0.48m

0.042+ 2.8g
—0.64i
~-Bel

~In each entry, the error term is one order higher in
q than the last term retained.

correspond to half the sum and half the difference
of the optical paths through the sphere, respec-
tively. The coefficients p;, (e), q;, (e) are deter-

mined by the CFU method' in terms of the exactly
known' saddle points L9, ', 8,". They are related,
through g, , to the Fresnel reflection and trans-
mission coefficients for the corresponding angle
of incidence and their derivatives with respect
to this angle.

For I
»'~~& I »1, the above result, in contrast

with Airy's theory, matches smoothly with those
in the neighboring angular regions. For I el
«rc ', one can employ power series expansions
of the coefficients in (5). For N=1.33, one finds
that A(e) = i[1.519+0.431e —0.115''i O(e')], f(e)
= —0.369m —0.0745''+O(e ), and p;, (e), q;, (e) are
given by the expressions in Table I.

The small value of Ipo, I = Ip» I/5 arises from
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FIG. 1. Polarized intensities for P = 5:=50: (a) g; (b) &, .

the angle of incidence for rainbow rays being

press polarization 2. Airy's approximation is ob-
nd hi hertained by neglecting terms of order & and 'g

in A(t) and r(&), taking po„(e) =p„(0), and setting
all other p, ,(e), q;, (e) equal to zero.

The main contribution to S, in the rainbow re-

S, '
(P, 9), that represents direct reflection at the

surface. This term, including corrections of or-
6der P ', has also been computed.

We have compared the exact Mie results for
/=1. 33, 50- P- 1500, 136'~ II- 142 with those
obtained from (1) to (5) and with the Airy approx-
ima ion, inct 'ncluding the direct reflection term in
both cases. The exact values IEq. (6)j o e,
f(e) and" of the coefficients P;, , „q;,,
er than their power series expansions, were
employed.

er ent in theThe CPU expansion is rapidly convergent in e
above range ~c . a( f. T ble I). The main correction
to the Airy theory arises from the Ai'( —x) term
x= —tc' P) in (5). The present theory leads to

the following predictions:
(i) For polarization 1, the correctio'ons to the

Airy theory are small within the main rainbow
(I I

~ 1) but they become appreciable for
the secondary peaks (supernumerary arcs x
»1). (ii) For polarization 2, the Ai'( —x) term
is dominant in the whole range (q» P»» Ip I), giv-

IO
136 138'

iii I

IQO 8 I420

FIG. 2. Same as Fig. I, for P =500.

in large eorreetions to the Airy theory. In par-
ticular, secondary-peak maxima and minima
should be interchanged for the two polarizations;
th' version has been observed at large angles, 'is lnv
where it arises from the change in sign o
re eflection amplitude at Brewster's angle.

These predictions are entirely confirme y
the numerical comparisons. yp'ical re resenta-
tive results are reproduced in Fig .s. 1 to 5. The
improvement over the Airy theory for polariza-
tion 2 is apparent even at P = 50 Fig. , g1 although
at this low p the validity of the asymptotic approx-
imations is being strained.

For p= 500 (Fig. 2), the main peak and part of
the first secondary are covered. The superim-
posed oscillations with period 4e = 300/P (in e-
grees) are due to interference with the direct re-
flection term. e ou-The out-of-phase character of the

approximation for polarization 2 is alreadyiry a i"

noticeable.
Interference with direct reflection remains ap-

preciable at P =1500 even close to 9~; to avoid
the corresponding rapid oscillations, we have
subtracted out the direct reflection term, plot-
tin I S, —S ~' I' in Fig. 3. Several secondaryj
peaks are covered, and the validity of predictions
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FIG. 4. Phase difference 6 f» p = &500.

rections and becomes dominant in the glory, is
due to incident rays near the edge of the sphere,
and it is associated with Regge-pole —type contri-
butions (surface waves) and higher-order Debye
terms. ' Thus, we believe that pure rainbow ef-
fects are completely accounted for by the present
theory. A detailed discussion will be given else-

FIG. 3. Intensities after subtracting out direct re-
Qection term, for p =&500: (a) IS( —Sg~ ~j ' (b) ( S2
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(i) and (ii) is readily apparent.
The independent quantity 6 is plotted in Fig. 4

for p =1500. Here the Airy theory fails even
close to I9~, while the present theory agrees with
the exact solution remarkably well throughout.
The rapid oscillations again arise from interfer-
ence with direct reflection; large phase varia-
tions occur close to intensity minima.

A different measure of the overall agreement
as a function of P is provided by the fractional
contributions" from the domain (8„8,) (here 8,
=136', 8, =142 ) to the asymptotic total cross
section 27ta',
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which approach a constant for large P. These
quantities are plotted in Fig. 5 for 30--P~ 1000.

The oscillatory character of the deviations"
between the present approximation and the exact
solution is consistent with interpreting them as
"ripple. " This effect, which is present in all di-

I i I i I i I 1 I

200 400 600
I i I i I

80O ~ 100O

FIG. 5. Fractional contributions f. to the total cross
section [see Eq. (7)]: (s) 10f&, (b) 10f&.
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where. '
Rainbow scattering in general must also be as-

sociated with a collision between two saddle points
in the complex angular momentum plane, and it
should therefore be expected that the CFU meth-
od also leads to improved results" in more gen-
eral cases.
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We report the preliminary results of an experiment designed to search for the C-non-
conserving decay of ground-state orthopositronium (1 S&) into four photons. In terms of
the branching ratio Ez, y=Rr y( S& 4y)/R& ( S, By), where Rz, &(S& 4y) is the C-non-

y 1

conserving four-photon decay rate and R3 (38& By) is the C-conserving three-photon de-'y

cay rate of free orthopositronium in our sample, we find Ez &(8 &&10 {68%confidence).

We report the preliminary results of a search
for the C-nonconserving decay of orthopositro-
nium (o-Ps) 1sS, into four y rays. This annihila-
tion mode is forbidden by C invariance only. ' Our
experimental results will be discussed in terms
of an upper limit on the branching ratio I"~'&

=Rr'~/R,
y

of the C-nonconserving 4y decay to
the C-conserving 3y decay of o-Ps.

The branching ratio may be related to a C-non-
conserving interaction Hamiltonian

e,. = () /m, ')e4s. ps Z„,Z„Z„„Z„„
developed by Mani and Rich. This is the sim-
plest C-nonconserving Hamiltonian that could al-
low the decay 3S, -4y. Here A. is the coupling con-
stant on which we set new limits. The other sym-
bols have t:heir usual meaning.

Evaluating the decay rate from the above inter-
action we find

R 4~=1/~ 4&=88K' sec 'r T

where R~'& is the C-nonconserving decay rate
into four X's. The branching ratio is

Z 4&=R '&/R =1.2&. 10-5) '
T T SX

where we have used R, = 7.25&& 10'.'
Previous experiments on C nonconservation in

Ps have searched for the C-nonconserving 3y de-
cay of the 1'S, states (parapositronium). The
most recent of these4 compared the threefold
coincidence count rate from Ps decay into differ-
ent angular configurations. The count rates are
primarily due to the decay S, -3y, with the pro-
cess 'S, -3y causing a smaB perturbation in the
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