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as n- ——,'. For —0.494 & g & —0.470 we find an
excellent fit to T,(a)/T, (0) for a=0.1995 and b
= 0.1241.

We would like to thank Professor J. A. Tjon
for many discussions and suggestions, Dr. J.
Groeneveld for an introduction to the Baxter solu-
tion of the eight-vertex model, and Dr. H. P.
Oudshoorn for assistance in obtaining the com-
puter display of the critical surface.

1.0

FIG. 3. The critical-temperature ratio T~(a)/T~(0)
as a function of o. = K~/K, for K& & 0, K3 ——0, and —l~ n
-+1. Circles correspond to values obtained by Dalton
and Wood (Ref. 9) for 0» a ~+1.

netic ground-state energy of the Ising spin lattice
with only nearest-neighbor and next-nearest-
neighbor interactions is the same as the antifer-
romagnetic ground-state energy with respect to
the next-nearest-neighbor sublattices. The cusp
can also be understood because these ground
states are only degenerate with respect to a
change of sign of all the Ising spins. It can be
shown that for large values of K, we have ap-
proximately K, = —2I(, ——,'a exp(- bK, ), which
leads to the limit in[(1+ 2 n)/a]T, (n)/T, (0) = —bK, (0)
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It is shown that spin waves exist in the hydrodynamic regime in superfluid He. Hydro-
dynamic equations ruling these spin waves are derived. Spin waves are studied in the
axial (Anderson-Brinkman-Morel) and in the isotropic (Balian-Werthamer) states.

It has been pointed out recently' that spin
waves must exist in superfluid 'He. The reason
is that spin-density fluctuations are coupled to
the fluctuations of the direction of the order pa-
rameter in spin space; so that spin waves are,
in some sense, driven by the fluctuations of the
order parameter. This makes it possible for
spin waves to exist in superfluid 'He, even with-
out the presence of a magnetic field.

These spin waves have been studied' in the

collisionless regime within the framework of the
weak-coupling BCS theory with p-wave pairing.
The resulting formulas are complicated, and

must, except in some limiting cases, be studied
numerically; the formalism is not simple. More
important is the fact that the frequency window
for this collisionless regime, 1/To«a «6/h, is
rather small: roughly 1 order of magnitude only,
around 100 MHz. This is very inconvenient for
experiments.
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In this Letter, I want to point out that spin
waves also exist in superfluid 'He in the hydro-
dynamic regime cov ~«1, and that they are de-
scribed by simple hydrodynamic equations. The
frequency window in this regime, 1/T...«&u

«1/7~, is extremely large (6 orders of magni-
tude) and the range of frequency is especially
convenient for experiment. This should stimulate
experimental work to study these spin waves.

The resulting spin-wave velocity is very sim-
ple and can easily be related to the superfluid
density' [through &p(T)] and to the susceptibility.
Experimental measurements of spin-wave veloci-
ties would provide a good independent check for
the latter two quantities. Spin waves are also a
very good tool to study the microscopic nature of
the order parameter, both in spin space and in
position space, because the spin polarization of
the modes and the anisotropy of their velocity are
directly related to the structure of. the order pa-
rameter. I note that these spin waves are, in
some sense, similar to fourth sound: They di-
rectly test the superfluid properties because
there is no normal part coming in. But they have
the main advantage over fourth sound of propa-
gating in the bulk which avoids the problems and
uncertainties caused by the restricted geometries
required by fourth-sound experiments.

Readers who are not interested in the deriva-
tion could skip to the hydrodynamic equations or
even directly to the description of the spin-wave
modes.

Formalism. —To derive these hydrodynamic
equations, I use the method' that I have set up to
study spin waves in the collisionless regime.

The principle is the following: One starts from
the kinetic equation for the distribution-function
matrix. To take into account the small fluctua-
tions of the direction of the order parameter, one
performs space-time-dependent spin rotation,
U= exp[- io ~ 0(r, f)], in such a way that, in the
new representation, the order parameter is in-
variant. Then the kinetic equation is expanded in
co and q, and diagonalized.

Here, to be more general, we will include a
static magnetic field H in the calculation. This
does not at all change the principle of the method.
Details on the inclusion of the magnetic field and
on the effect of the dipole interaction (which is
neglected here) will be given elsewhere. The di-
agonalized kinetic equation is

m 5v„=5v„q,BF~/&k;. +2i 5E x5v„, (1)

where 6vk is the spin part of the fluctuations of
the quasiparticle distribution and E~' = $„'+~b, „P;
5E' is (in the diagonalized representation) the
change in the spin part of the energy matrix due
to the magnetic field. Equation (1) reduces in the
normal state to the equation used by Silin4 to
study spin waves in normal 'He. 6vk is the de-
parture from local equilibrium:

k
— Vk —Q Ek (2)

where y'= &y/&E~ and 2@=—tanh(PE„/2), and 5E~
is the local change in the spin part of the energy
matrix due to the change in the quasiparticle dis-
tribution and to the fluctuations of the order pa-
rameter. We will assume for simplicity that only
the s-wave part F, '=N~fo' of the antisymmetric
Fermi-liquid parameters is nonzero. With this
simplification'

5E„=k,.A,. +($„/E„)X—(1 —$ /E„)(d /Q. P)[d * ~ (k;A, —X)], (3)

where d~ is related to the order-parameter matrix E„by h„=i(o d~)o, and

X = V+f0'5p;

5p is defined below. Here A;, which can be thought of as some "spin superfluid velocity, " and —V,
which is the "spin part of the chemical-potential shift, "are related to the spin rotation by

A,. =iq,.8/m*; V= —ia6+&uox0; v, =yH,

where y is the nuclear magnetic moment of 'He. Equation (5) can be rewritten as

m ~uA, . = im*A; x 0 —q;V,

(4)

(5)

which is an equation for the spin superfluid velocity. To determine A, and V, one needs an'other rela-
tion which is the spin-density conservation law:

5p=q,-j,. —iwo X 5p. (7)



VoLUME 33, +UMBER 16 PHYSICAL RKVIKW LETTERS 14 OGToBER 1974

(10)

(»)j, =(p), , A, ,

where y is the static susceptibility tensor at constant d„(with Fermi-liquid effects) and (p)... which
is a tensor both in spin and direct space, is a spin superfluid density. Explicitly,

+ OOdQ d»
[ ]

dQ d
[ )]P» 4p I i~ [2

j;/N, =(1/m*) f(dQ»/4~) f™d((k;k,/E')(y' —y/E)d»x(A, xd»*).

Here 6p is the local change in magnetization and j; the spin current:

p Op+ 26 x po Q»[(g»/E») 5v»+(1 g»/E»)(d»/g, »P)(d»~. 5v») +(y/F» )d»x(gxd»*)] (8)

j,. = pA,. +(1/m*)g»k, [5v»- (1 —$»/E»)(d»/Ib»I')(d»* ~ 5v») +(y/E»')k, d„(A; d»)], (9)

where p is the ~He density; 6p is the change in magnetization seen in the rotating spin reference frame.
This is not the same as the change in magnetization 6p in the rest frame because the static magnetiza-
tion po gives an oscillating contribution 28xpo in the oscillating reference frames. Equations (1), (3),
(5), and (7)-(9) are our basic equations. They reduce to those given in Ref. 2 for zero magnetic field.

HyChodynamic equations. —If the collisionless condition co7~» I is no longer satisfied, one must add
collision terms to Eq. (1). In the hydrodynamic regime &u7~«1, Gv» is given by a local equilibrium
condition. Note that there is nothing like "normal spin velocity" because the spin current does not
commute with the bare interaction; such a normal velocity would decay by collisions. Therefore the
local change in energy is simply 5E» and the local equilibrium condition is hv»=0. Equations (8) and
(9) become, with the aid of Eqs. (2) and (3),

g- —.( ~)
—-i

» -x+g a

Equations (10) and (11) together with Eqs. (7) and
(5) [or (6) in zero magnetic field] are the desired
hydrodynamic equations. They are very similar
to the usual hydrodynamic equations for the par-
ticle-density part, especially in zero magnetic
field. Equation (10) merely states that, in the
local rotating reference frame, the magnetiza-
tion 5p corresponding to the change in spin chem-
ical potential —V is given by the susceptibility X.
In zero magnetic field or for an isotropic suscep-
tibility, Eq. (10) holds also in the rest frame,
that is, between 5p and i~0. The quantity i+0
can be interpreted as the spin chemical-potential
change in the rest frame, —V being the corre-
sponding quantity in the rotating frame.

SPin-coatee modes. —Now we turn to the most
important cases, namely the axial (Anderson-
Brinkman-Morel) and the isotropic (Balian-Wert-
hamer) states, which are presently believed to
describe the A phase and the B phase, respec-
tively. In the axial state, d~ has a fixed direc-
tion, the y-axis direction for instance. From
Eq. (13), we see that a, spin superfluid velocity
along the y axis gives a zero spin current. Im-
mediately we see that, for zero magnetic field,
there is no Mode with spin polarization along the
y axis. This absence merely reflects the fact
that a spin rotation 0 along the y axis does not
give rise to a fluctuation of the order-parameter

direction. This result is also valid in the colli-
sionless regime. ' There are two degenerate
modes with polarization parallel to the x and z
axes. Their dispersion relation is easily found
to be

~' = —.(e l' )'(1+F.')[1—q,(T) ],

where

(14)

y,(T) =3f(dn„/4~) f d(( q )(k q)2. (15)
The spin-wave velocity corresponding to Eq. (14}
is anisotropic as expected. Note that y,(T) also
enters into the expression for the usual super-
fluid density' which can be, in this way, related
to the spin-wave velocity.

In nonzero magnetic field, d, is perpendicular
to the field. We choose co, parallel to the ~ axis.
There are still only two modes but the degener-
acy is removed The lon.gitudinal mode (magne-
tization along the z axis) is clearly unaffected by
the field and Eq. (14) still holds. Because of the
I armor force, the transverse mode is no longer
polarized along the x axis. From Eq. (7), e 5p,
= iw, 5p„, and it may also be seen from Eqs. (7)
and (10) that 8 and 5p are parallel. This mode is
thus elliptically polarized. The dispersion rela-
tion is easily found to be

(u' = (u, '+ —,
' (q&, )'(I + F;)[I—P, (T)].
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In the isotropic state, d, =R(k), where R is a fixed rotation. From Eqs. (5), (7), (10), and (11), we
obtain

(qV, )' 1 —P(T) '~ (- ), d, (d, .9)
o 3 X(T) I g lm (17)

~(~ + ~.) = —,'.(ql'F)'ll —4(T)1/x(T) . (ro)

If R(q) is perpendicular to ~„one has a mode
linearly polarized along the field with

~' = T';(ql'F)'[I —0(T)]/x(T),

and two transverse modes elliptically polarized.
The results in zero field are easily obtained from
the first case.

These results agree at zero temperature with
the collisionless-regime results, ' both in the ax-
ial and the isotropic state. This is quite natural
since, in both regimes, there are no quasiparti-
cle excitations: 5v, = 0.

It can easily be seen that these spin waves are
not blurred out by spin diffusion. The condition
is that, during a period, the spread of the diffu-

where Q(T) is the Yoshida function and X(T) is,
within some constants, the susceptibility of the
isotropic state:

2+v(T)
3 +.'t2 e(T)1

In Eq. (17), the angular average is over the Fer-
mi surface. The eigenmodes of Eq. (17) are in
general complicated because there are two sym-
metry axes in the problem: v, and R(q). How-
ever, if R(q) is parallel to ~„one finds a lon-
gitudinal mode with

~' = —,'.(qI'F)'ll —0 (T)]/x(T),

and two circularly polarized transverse modes
with

sion is much smaller than the wavelength:
q(D/(u)' «1. With the diffusion constant D- ~F'&~ and our results for the spin-wave veloc-
ity, we see that this condition is equivalent to
the hydrodynamic condition wTD «1.

The effect of the dipole interaction, in the ax-
ial state, is merely to add ~~' to the right-hand
side of Eqs. (14) and (16), where ~~ is the NMR
shift. In the isotropic state, because of the di-
pole interaction, the rotation R is around w„and
one must add 0'f to the right-hand side of Eq.
(17); the tensor 5 has a single nonzero eigenval-
ue which is the longitudinal NMR resonance fre-
quency and corresponds to polarization parallel
to the field.
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